

Japan Steel Bridge Engineering Association TECHNICAL REPORT /No.085 令和2年6月

STEEL

まえがき

鋼橋の現場接合において,昭和40年以前はリベット接合が主流であったが,昭和40年代に入り徐々 にボルト接合が適用され始めた. 道路橋示方書では昭和48年,鉄道の建造物設計標準では昭和45年 にボルトに関する基準が示された. 現在では,溶接接合を適用する場合もあるが,ボルト接合が一般 に使用されており,その際,高力ボルト摩擦接合継手を適用している.

実施工において、使用する摩擦面、締付け機器あるいは検査項目等は、徐々(一部)に改良されて きている.このため、使用するボルトに対する施工性や管理性(施工上の)についても変化している が、これらは明確にされていない.また、ボルト継手に関する設計基準や施工基準は、道路橋示方書 や鉄道標準で示されているが、これまでボルト基準の改定については、例えば、摩擦面は無機ジンク リッチペイント塗布面も適用可能になったことや、その摩擦面において適用当初の設計すべり係数は 0.40 であったのが、0.45 に変更されるなど、設計基準については必要に応じ、一部改訂されてきた. しかしながら、施工基準に関してはこれまで大きな改訂はされてこなかった.

そこで、鋼橋技術研究会 高力ボルト継手施工部会では、高力ボルト継手の施工に関する課題をテ ーマとし、平成29年1月から令和2年3月までの約3年にわたり検討を進めてきた.本部会では検討 あたり、以下の4つのWGで活動を行った.

WG1: ボルト施工に関する調査 WG

- WG2: ナット回転法の適用に関する検討WG
- WG3:ボルト施工基準に関する検討WG
- WG4:ボルト試験方法に関する検討WG

WG1では、架設現場で一般に使用されるトルシア形ボルトと高力六角ボルトの施工性の違いを明確 にさせるため、実施工において作業時間を計測し、定量的に作業効率の比較検討を行った.また、ボ ルトの製品検査証明書や現場で行う予備試験の統計調査を行い、ボルトの性能等を明確にしたうえで、 現場での予備試験のあり方等も検討した.WG2では、F10Tのナット回転法の適用を可能にさせるた め、ボルト試験を行いボルトが降伏域に入らないナット回転量を提案した.また、ナット回転法の一 次締めであるスナックタイトの実計測も行い、どの程度の軸力が導入されるのか、あるいはどの程度 のばらつきなのか等も示した.WG3では、現在の基準において摩擦面に依らずボルト締め付けは設計 ボルト軸力に10%増しとしているが、ここでは摩擦面に応じた適切な導入軸力を検討した.また、現 在の基準では、1 つの継手内においては、同一の接触面(摩擦面処理)とすることを基本としている が、異なる接触面を有するボルト継手を適用する場合もあり、その適用性について検討した.WG4 は、ボルト試験に関して明確にされていない試験条件を検討することとした.具体的には、キャリブ レーション試験方法の検討、リラクセーション試験における試験開始時の検討および変位量のよるす べり判定値の検討を行った.

本報告書は、上記の各 WG で検討したものをまとめたものであり、部会活動を積極的に進めていた だいた高力ボルト継手施工部会の幹事の方々、部会員の方々に感謝いたします.また、本部会の活動 に関して貴重なご意見、ご助言をいただきました鋼橋技術研究会の関係各位に感謝いたします.

鋼橋技術研究会 高力ボルト継手施工部会 部会長 南 邦明

鋼橋技術研究会 高力ボルト継手施工部会 会員名簿

役職	氏	名	所 属
部 会 長	南	邦明	鉄道建設・運輸施設整備支援機構
幹 事 長	内田	大介	法政大学
幹 事	白旗	弘実	東京都市大学
]]	田村	洋	横浜国立大学
]]	遠藤	輝好	巴コーポレーション
]]	澁谷	敦	宮地エンジニアリング
庶 務 幹 事	小峰	翔一	日本ファブテック
部 会 員	藤野	大地	川田工業
]]	矢野	将太	川田テクノシステム
]]	吉岡	夏樹	駒井ハルテック
]]	茂呂	充	長大
]]	樋口	祐治	パシフィックコンサルタンツ
]]	濱	達矢	三井 E&S 鉄構エンジニアリング
]]	宮井	大輔	横河ブリッジ
			※所属については R2.3 時点

鋼橋技術研究会 高力ボルト継手施工部会 報告書

- 第 I編 ボルト施工に関する調査
- 第Ⅱ編 F10T へのナット回転法適用に向けた検討
- 第皿編 ボルト施工基準に関する検討
- 第Ⅳ編 ボルト試験方法に関する検討
- 資料 高力ボルト継手施工部会での研究成果

I. ボルト施工に関する検討WG

ボルト施工に関する調査

ボルト施工に関する検討WGメンバー

WGリーダー	遠藤	輝好	(株) 巴コーポレーション
幹事	田村	洋	横浜国立大学
11	澁谷	敦	宮地エンジニアリング (株)
11	小峰	翔一	日本ファブテック (株)
部会員	樋口	祐治	パシフィックコンサルタンツ (株)

ボルト施工に関する検討WG 目次

1. はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -1-	1
2. 施工基準の調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -2-	1
2-1 調査対象	I -2-	1
2-2 各種施工基準の比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -2-	1
2-2-1 ボルト・ナットおよび座金 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -2-	1
2−2−2 接合面 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -2-	2
2-2-3 器具の検定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -2-	2
2-2-4 ボルトの締付け・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -2-	4
2-2-5 検査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -2-	5
2-2-6 基準内容比較一覧および道路橋における各基準の改定年表・・・・・・・・	I -2-	6
3. 高力ボルトの統計調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	1
3-1 調査概要および規定値について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	1
3-1-1 S10T(W) ·····	I -3-	2
3-1-2 F10T(W) ·····	I -3-	3
3-1-3 F8T ·····	I -3-	3
3-2 ボルト軸力の調査結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	4
3-2-1 検査証明書 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	4
3-2-2 立会い試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	5
3-2-3 現場試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	8
3-3 トルク係数値の調査結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	16
3−3−1 検査証明書 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	16
3-3-2 立会い試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	18
3−3−3 現場試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	20
3-4 機械的性質の調査結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	23
3-4-1 耐力(0.2%耐力) ·····	I -3-	25
3-4-2 引張強さ(引張強度)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	27
3-4-3 伸び・絞り・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	30
3-4-4 引張荷重 · · · · · · · · · · · · · · · · · · ·	I -3-	33
3-4-5 硬さ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	35
3-4-6 めっき膜厚 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	38
3-5 統計調査のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -3-	38

4. 施工性の調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -4-	1
4-1 調査方法 ······	I -4-	1
4-1-1 施工項目の違い ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -4-	1
4−1−2 計測方法 ······	I -4-	5
4-2 調査結果	I -4-	5
4-2-1 ボルトの締付け・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -4-	5
4−2−2 検査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -4-	6
4-2-3 施工後作業 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	I -4-	7
4-2-4 トルシア形高カボルトと六角高カボルトの作業時間の違い・・・・・	I -4-	7
4-3 考察	I -4-	7
4−4 締付け作業の課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -4-	9
5. ボルト施工の作業項目調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -5-	1
5-1 施工計画書の調査および調査対象	I -5-	1
5-2 調査結果 ······	I -5-	1
5-2-1 フローチャート	I -5-	1
5-2-2 ボルトの保管 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -5-	4
5-2-3 軸力計の検定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -5-	5
5-2-4 現場予備試験 · · · · · · · · · · · · · · · · · · ·	I -5-	6
5-2-5 締付け作業要領・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -5-	8
5-2-6 検査 ·····	I -5-	10
5-3 考察 · · · · · · · · · · · · · · · · · ·	I -5-	12
6. 作業効率化に向けた方策案 ······	I -6-	1
6-1 トルシア形高カボルトにおける現場予備試験の実施頻度の見直し・・・・・	I -6-	1
6-1-1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -6-	1
6-1-2 本部会における検討成果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -6-	1
6-1-3 施工管理基準に対する提案	I -6-	4
6-2 高力六角ボルト(F10T)における締付け完了後の検査方法の見直し・・・・・・・	I -6-	5
6-2-1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -6-	5
6-2-2 本部会における検討成果	I -6-	5
6-2-3 施工管理基準に対する提案 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -6-	6
7. まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I -7-	1

1. はじめに

高力ボルト摩擦接合継手は、鋼橋の架設現場で広く用いられており、リベット接合からの移行時期で ある昭和 30 年代の中頃(1960 年頃)から使用され始めて現在まで約 60 年経過した^{1,2,3,4)}.時代の変化 とともに使用するボルトも変化し、ボルトの遅れ破壊に配慮した昭和 55 年の道路橋示方書⁵⁾では F11T を削除し、摩擦接合面用トルシア形高力ボルト規格⁶⁾を道路協会が制定したのは昭和 58 年である.高 力六角ボルト(F10T)は JIS B 1186(日本規格協会)⁷⁾で規格化されているが、トルシア形高力ボルト (S10T)や溶融亜鉛めっき高力ボルト(F8T)は日本規格協会による規格化はされておらず、前者は各 協会の基準^{8,9,10)}が適用され、後者は JIS B 1186 を準用している.また、高力ボルトの施工方法に関し ては各協会の基準が適用されており、道路橋では道路橋示方書(日本道路協会)⁸⁾、鉄道橋では鉄道構 造物等設計標準(鉄道総合技術研究所)⁹⁾などが用いられている.

鋼橋の高力ボルトの施工に関して,道路橋示方書および鉄道構造物等設計標準などではトルク法を基 本とし,溶融亜鉛めっき高力ボルト(F8T)のみナット回転法が適用されている.これまで設計基準や 高力ボルトの材料(強度)については必要に応じて改定されてきたが,施工基準については大きな改定 はされてこなかった.トルク法の締付け基準は,昭和 52 年発行の「トルク法による高力ボルト摩擦接 合継手施工管理要領」(日本道路協会)¹¹⁾や昭和 58 年発行の「トルシア形高力ボルト施工管理要領」(日 本道路協会)¹²⁾に示されて以降,道路橋示方書の改定等で多少の変更や修正はあるものの,これまで設 計基準が必要に応じて改定がなされてきたことと比べると施工基準に関しては現在までほとんど変 わっていない.

これまで、鋼橋の高力ボルト摩擦接合継手に関する出来事として、平成2年改定の道路橋示方書¹³⁾ 以降は摩擦接合面に無機ジンクリッチペイントを用いることが可能となった.平成10年前後以降はガ イドライン型設計¹⁴⁾によりフィラープレートを用いた継手が増加した.また、平成17年発行の鋼道路 橋塗装・防食便覧¹⁵⁾では、トルシア形高力ボルト(S10T)のピンテール破断跡を平滑に仕上げること が記載され、ボルト締付け後の作業が増えた.

そこで、本編ではボルト施工の実態確認や効率化のための基礎データを収集することを目的として、 第2章では各高力ボルトの施工方法に関して締付け方法、管理、検査の内容を中心に道路橋、鉄道橋、 建築構造物の施工基準を調査した.第3章では現在使用されている高力ボルトの品質を把握するため製 造時の製品検査証明書、ボルト出荷時の立会い試験、架設現場での現場予備試験における結果の統計調 査を実施した.第4章では現状のボルト施工(検査、締付け後作業を含む)に要する時間を調査した. 第5章では各工事現場の施工計画書の管理項目と各基準の関連性等を調査した.第6章では調査結果お よびII編での成果をもとにボルト施工に関する効率化の提案を検討した.

なお、本編では、当該基準および規格に関して略称を用いる場合、表 1-1-1 に示す略称を用いることとする。なお、基準および規格の変化について述べる場合は略称に発行年を付記する。

発行元	設計基準	発行年月日	略称
日本道路協会	道路橋示方書・同解説 Ⅱ鋼橋・鋼部材編	2017年11月	道示
日本道路協会	鋼道路橋施工便覧	2015年 4月	施工便覧
鉄道総合技術研究所	鉄道構造物等設計標準・同解説 鋼・合成構造物	2009年 7月	鉄道標準
土木学会	鋼・合成構造標準示方書 施工編	2018年 1月	土木基準
日本建築学会	高力ボルト接合設計施工ガイドブック	2016年 5月	建築基準
日本規格協会	摩擦接合用高力六角ボルト・六角ナット・ 平座金のセット	2013 年	JIS B 1186
日本規格協会	金属材料引張試験方法	2011年	JIS Z 2241

表 1-1-1 基準・規格の略称

参考文献)

- 1) 田島二郎:高力ボルト摩擦接合概説,1966.5.
- 2) 日本鋼構造協会,鋼材倶楽部:鋼構造接合資料集成-リベット接合・高力ボルト接合-, 1977.3.
- 3) 土木学会:高力ボルト摩擦接合継手の設計・施工・維持管理指針(案),2006.12.
- 4) 日本鋼構造協会:高力ボルト接合技術の現状と課題,2013.3
- 5) 日本道路協会:道路橋示方書·同解説 II 鋼橋編, 1980.2.
- 6) 摩擦接合用トルシア形高力ボルト・六角ナット・平座金のセット, 解説, 1983.10
- 7) 日本産業規格: JIS B 1186「摩擦接合用高力六角ボルト・ 六角ナット・平座金のセット」, 2013.
- 8) 日本道路協会:道路橋示方書・同解説 II 鋼橋・鋼部材編, 2017.11.
- 9) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説(鋼·合成構造物), 2009.7.
- 10) 日本鋼構造協会:構造用トルシア形高力ボルト・六角ナット・平座金のセット, 2015.3.
- 11) 日本道路協会:トルク法による高力ボルト摩擦接合継手施工管理要領, 1977.8.
- 12) 日本道路協会:トルシア形高力ボルト施工管理要領, 1983.1.
- 13) 日本道路協会:道路橋示方書・同解説 II 鋼橋編, 1990.2.
- 14) 日本橋梁建設協会:ガイドライン型設計 適用上の考え方と標準図集, 1998.5
- 15) 日本道路協会:鋼道路橋塗装·防食便覧, 2005.12

2-1 調査対象

施工基準に関する調査は、国内の道路橋、鉄道橋、建築構造物に関する、日本道路協会、鉄道総合技術研究所および日本建築学会の2000年以降に発行された基準を中心に行った.なお、高力ボルトに関して初めて基準化された道路協会の道路橋示方書・同解説 II 鋼橋編 1973年9月 と、高力ボルトに関する要領・規格を整理した高力ボルトに関する要領・規格集 1984 年 9 月についても比較対象として整理を行った.本章で調査対象とした基準を表 2-1-1 に示す.以降、表中の略称で示すものとする.

発行元	設計基準	発行年月日	略称				
日本道路協会	道路橋示方書・同解説 Ⅱ鋼橋編 ¹⁾	1973 年 9 月	S48 道示				
日本道路協会	高カボルトに関する要領・規格集 ²⁾	1984 年 9 月	S59 ボルト要領				
日本道路協会	道路橋示方書・同解説 II 鋼橋編 ³⁾	2012 年 3 月	H24 道示				
日本道路協会	鋼道路橋施工便覧 4)	2015 年 4 月	H27 施工便覧				
日本道路協会	道路橋示方書・同解説 Ⅱ鋼橋・鋼部材編 5)	2017 年 11 月	H29 道示				
鉄道総合技術研究所	鉄道構造物等設計標準・同解説 鋼・合成構造物 ⁶⁾	2009 年 7 月	鉄道標準				
日本建築学会	高カボルト接合設計施エガイドブック ⁷⁾	2003 年 12 月	2003 建築基準				
日本建築学会	高カボルト接合設計施エガイドブック ⁸⁾	2016 年 5 月	2016 建築基準				

表 2-1-1 対象基準一覧

なお、本章の高力六角ボルトの整理は、一般的な締付け方法とされているトルク法による締付け方法 を基本とし、ナット回転法については特有の内容を追記する形で整理する.

2-2 各種施工基準の比較

2-2-1 ボルト・ナットおよび座金

ボルト・ナットおよび座金について、各基準で規定しているセット諸元について述べる. なお、ボル トの等級は本調査で対象としている日本道路協会発行の道示、ボルト要領、施工便覧では F8T, F10T, S10Tを対象としている. ただし、S48 道示は F11T, B8T, B10T も対象であったが、S59 ボルト要領発刊 時には対象外となっている. 鉄道標準では道路協会発行の基準と同様に F8T, F10T, S10T を対象として いる. 建築基準では 2003 建築基準では F8T, F10T, S10T を対象としていたが、2016 建築基準では F8T が削除され、F10T, S10T を対象としている. 高力六角ボルトについて、S48 道示では特に設定されてい なかったが、S59 ボルト要領でトルク係数値の平均値、変動係数、20℃あたりの温度変化に対する1 製 造ロットのトルク係数値の変動幅などのセット諸元について記載がされた. 以降、道示や建築基準、鉄 道標準で管理値が決められ、現在に至っている. トルシア形高力ボルトについて、道示、鉄道標準では 上記に記載したトルク係数の平均値、変動係数、変動幅は定められていないが、建築基準ではトルク係 数値の範囲のみについて記載されている.

納入後についても,厳密な保管方法が整理されている.いずれの基準も,工場での検査成績書と照合し,品質の保証されたものであることを確認することや,工場包装のまま,雨などの湿気を与えないよ

う保管庫に保存すること、出荷から施工までの期間を短くすることなど、ボルトセットへの配慮すべき 事項が記載されている.H27施工便覧、鉄道標準については、それらに加えて、保管期間は6か月を目 安にするという具体な期間が記載されており、施工時のボルトセットの予備数も具体に決められている.

なお,H29 道示のみ,トルシア形高力ボルトのS14Tの使用が認められている.使用にあたっては塩分 環境が厳しくない箇所など,適用可能条件が明記されている.

2-2-2 接合面

接合面の処理に付随したすべり係数値について,高力六角ボルト,トルシア形高力ボルトともに,S59 ボルト要領やH24 道示以前では一律 0.4 としていたが,H24 道示では接触面を塗装しない場合は 0.40, 無機ジンクリッチペイントを塗装する場合は 0.45 と,これまで得た知見を踏まえて係数値を改定して いる.それに伴い,施工時に接触面の汚れや黒皮,さびなどは十分に除去するという留意事項に加えて, H24 道示以降では,無機ジンクリッチペイントを塗装する場合の塗膜厚や亜鉛含有量など,上記すべり 係数を満足するために必要な詳細な条件(**表 2-2-1**参照)が追加された.一方,鉄道標準は処理に関係 なく 0.4 以上としているが,接触面は中期・長期耐久型塗装系および耐候性鋼材の場合は,無機ジンク リッチペイントを塗布するものとし,道示と同様に無機ジンクリッチペイントの塗装仕様が記載されて いる.建築基準では自然発生の赤さびによる場合,ブラスト処理による場合,薬剤処理による場合のい ずれかとした条件で,すべり係数を 0.45 としている.道示,鉄道標準とは違い,無機ジンクリッチペ イントのみの接触面仕様ではないため,ブラストは表面粗さ 50 µ mRz 以上(Rz は JIS B 0601 における最 大高さを示す)を前提として,ショットブラストまたはグリットブラストとすることや,薬剤処理は使 用する薬剤の留意事項について良く知った上で用いなければならないことが記載されている.なお,こ れらの差異については鉄道標準,道示は曝露環境下の構造物が対象であるが,建築については外壁内で あり,使用環境が異なることに起因したものである.

項目	条件
接触面片面あたりの最小乾燥塗膜厚	50 <i>μ</i> m以上
接触面の合計乾燥塗膜厚	100∼200µm
乾燥塗膜中の亜鉛含有量	80%以上
亜鉛末の粒径(50%平均粒径)	10 <i>μ</i> m程度

表 2-2-1 無機ジンクリッチペイントを塗装する場合の条件(H29 道示より)

2-2-3 器具の検定

(1) 高力六角ボルト

S59 ボルト要領で初めて測定器具や締付け機の検定について詳しく記載がされた.測定器具(軸力計) の検定回数は現場搬入時に1回,搬入後は3か月に1回行い,軸力計の軸力範囲は基準となる計測機器 が示す値の±3%以内としている.締付け機も測定回数は現場搬入時に1回,搬入後は3か月に1回と測 定器具と同様のタイミングで行うこととしている.また,出力トルクの変動係数は基準となる計測機器 が示す値の4%以下と規定している.トルクレンチの検定は現場搬入時に1回,搬入後は1か月に1回 を標準とし,使用頻度によっては定期検定の期間を別に定めることとしている.以降,道示では大きな 変更はなく,鉄道標準においても同様な検定方法をとっている.一方で,建築基準では道示,鉄道標準 ほど詳細な記載はないが,検定器具の軸力の範囲は道示,鉄道標準と同様に基準となる計測機器が示す 値の±3%以内と記載されている.

締付け機の調整は、毎日もしくは節目ごとでの実施が各基準で規定されている.また、その調整方法 としては、その日に締付ける予定の一施工ロットの中から、軸力計にかかる首下長さのボルト5本以上 を使用することを標準としている.締付け軸力の平均値の範囲についても規定されており、5本以上の ボルトの平均値の上限値と下限値が表にて整理されている.それらを整理したものを表 2-2-2 に示す. 平均値の範囲は、道示と鉄道標準は同じであるが、建築基準はそれらよりも広い範囲を許容している.

ボルトの等級	ねじの呼び	H29道示		鉄道標準		2016建築基準	
		下限値	上限値	下限値	上限値	下限値	上限值
	M20	139	153	139	153	-	-
F8T	M22	173	191	173	191	-	-
	M24	200	222	200	222	-	_
	M20	172	190	172	190	155	209
F10T	M22	215	237	215	237	191	259
	M24	249	275	249	275	223	301

表 2-2-2 締付け機の調整に用いるボルトの平均軸力(kN)

※ 表中の - は該当する基準に記載されていないことを示す

※ 鉄道標準は基準に示される標準締付け軸力の±5%の値を算出して記入している

(2) トルシア形高力ボルト

軸力計の検定回数は、高力六角ボルトと同様にボルト要領で整理され、道示、鉄道標準はそれに準拠 し、現場搬入時に1回、搬入後は3か月に1回行い、軸力計の軸力範囲は基準となる計測機器が示す値 の±3%以内としている.建築基準は軸力の範囲のみ規定している.なお、締付け機は、トルクを制御す る機能をもたずに単にトルクを与えるためのものであることから、検定の必要はなく、整備点検を行え ばよい.

トルシア形高力ボルトは、現場予備試験として、その日に締付ける予定の全製造ロットのうち、軸力 計にかかる首下長さの1つの製造ロットから5組の供試セットを無作為に抽出して行うことを標準とし ている.締付け軸力の平均値の範囲について、5本の供試ボルトの軸力の平均値が一定値以下であるこ とを確認することとしている.その平均値の範囲は各基準で表にて整理されている.それらを整理した ものを表 2-2-3に示す.各基準で大きな差はないが、建築基準のみ、他の2つの基準に比べて上限値が 高く設定されている.なお、規定の平均値を満足しない場合、同じ製造ロットにて倍数の試験を行い、 それでも満足しない場合、その製造ロットのセットを使用してはならないことが明記されている.

ボルトの等級	わじの呼び	H29道示		鉄道標準		2016建築基準	
	120010	下限値	上限值	鉄道標準 2016建築 下限値 上限値 下限値 172 202 172 212 249 212 247 290 247 - - - - - - - - -	上限值		
	M20	172	202	172	202	172	207
S10T	M22	212	249	212	249	212	256
	M24	247	290	247	290	247	298
S1/T	M22	311	373	1	_	-	-
5141	M24	363	435	-	-	-	-

表 2-2-3 現場予備試験に用いるボルトの平均軸力(常時)(kN)

2-2-4 ボルトの締付け

(1) 高力六角ボルト

ボルトの締付け方法について、各基準にていずれも原則としてナットを回して行うことと記載されて いる.予備締めについて、ボルト要領、道示、鉄道標準は締付けボルト軸力の 60%程度で予備締めを行 い、予備締め後にはボルト、ナットおよび座金にマーキングを実施するよう記載されている.ナット回 転法による締付けの場合、道示、鉄道標準では組立用スパナで力いっぱい締めた状態と記載されており、 定量的な軸力は示されていない.ただし、鉄道標準では溶融亜鉛めっきボルトの一次締めにおいて、M20、 22 では約 150kN・mm、M24 で約 200kN・mm の管理トルク値が記載されている.建築基準では、トルク法、 ナット回転法ともにトルク値 100~200N・m の範囲で決めるよう記載され、同基準にボルト軸力とナッ ト回転量の関係模式図が示されている.なお、ナット回転法による締付けについては、本報告書のII 編 において、高力六角ボルト(F10T)へのナット回転法適用に向けた調査研究を実施した.

ボルトの締付けにあたっては,所定の設計ボルト軸力が得られるように締付けることが各基準で規定 されている.各基準の設計ボルト軸力を表 2-2-4 に示す.なお,トルク法による高力六角ボルトの締付 けボルト軸力は設計ボルト軸力の 10%を標準としている.ナット回転法においては,設計軸力による管 理ではなく,予備締めが終わった状態から各基準で定められている回転量でボルトを締め付けることと している.いずれの基準においても,ボルト長に応じた回転量が規定されている.

締付け順序は、いずれの基準も連結板の中央ボルトから順次端部ボルトに向かって行い、予備締めと本締めの2度締めを行うよう記載されている.なお、道示では、具体な締付け順序の図が記載されているが、図2-2-1に示すように、S48とH24、H29道示(H2以降)では若干順序が変更されている.

締付け条件は、ボルト要領、道示、鉄道標準では降雨時は実施不可であると記載されている.建築基準においても、降雨時は防水シートなどで覆って養生するよう記載されているが、基本は降雨時の実施 を推奨していない.

その他,本締め締付け記録について,ボルト要領までは記録計による記録を取るよう記載があるが, 以降の道示では規定されていない.

ボルトの等級	ねじの呼び	H29道示	鉄道標準	2016建築基準
	M20	133	133(147)	-
F8T	M22	165	165(182)	-
	M24	192	192(211)	-
	M20	165	165(182)	165
F10T	M22	205	205(225)	205
	M24	238	238(262)	238

表 2-2-4 高力ボルトの設計ボルト軸力(kN)

※ 表中の - は該当する基準に記載されていないことを示す

※ 鉄道標準の表中の括弧書き数値は標準締付け軸力を示す

(鉄道標準において標準締付け軸力は設計ボルト軸力の10%増しとされている)

図 2-2-1 ボルト締付順序の違い

(2) トルシア形高力ボルト

ボルトの締付け方法について,各基準にていずれも専用締付け機で行うことと記載されている.予備 締めについて,高力六角ボルトと同様に,ボルト要領,道示,鉄道標準は締付けボルト軸力の 60%程度 で予備締めを行い,予備締め後にはボルト,ナットおよび座金にマーキングを実施するよう記載されて いる.ボルトの締付けにあたっては,所定の設計軸力が得られるように締付けることが各基準で規定さ れている.各基準の設計ボルト軸力を表 2-2-5 に示す.なお,トルシア形高力ボルトはトルク法で締め 付けるため,締付けボルト軸力は設計ボルト軸力の 10%を標準としている.

その他, 締付け順序, 締付け条件は高力六角ボルトと同様の内容で各基準において整理されている.

ボルトの等級	ねじの呼び	H29道示	鉄道標準	2016建築基準
	M20	133	133(147)	-
S8T	M22	165	165(182)	_
	M24	192	192(211)	_
	M20	165	165(182)	165
S10T	M22	205	205(225)	205
	M24	238	238(262)	238
S14T	M22	299	Ι	_
5141	M24	349	_	_

表 2-2-5 高力ボルトの設計ボルト軸力(kN)

※ 表中の - は該当する基準に記載されていないことを示す

※ 鉄道標準の表中の括弧書き数値は標準締付け軸力を示す

(鉄道標準において標準締付け軸力は設計ボルト軸力の10%増しとされている)

2-2-5 検査

検査のタイミングは、いずれの基準、ボルト種類に関係なく、締付け後、速やかに実施するよう記載 されている.

高力六角ボルトの締付けトルクの留意点や検査基準は、ボルト全数に締忘れ、共回り等の異常があってはならないことや、各ボルト群の10%のボルト本数を標準として、トルクレンチによって締付け検査

を行うこと(合格基準はキャリブレーション時の設定トルク値±10%範囲内),不合格の場合,倍数の ボルトを抜き出し再検査し,再検査で不合格の場合,その群のボルト全数を検査することが道示,鉄道 標準では記載されている.なお,建築基準では詳細は記載されていない.ナット回転法の場合は,全数 におけるマーキングによる外観検査を基本としており,所定の回転量が不足していれば増し締めを行い, 過大なものについては新しいボルトセットに取替え,締め直しを行うよう記載されている.

トルシア形高力ボルトは、その締付け機構の特性より、各基準にはピンテール切断の目視による確認 について記載されている.ピンテール切断の目視確認は全数にて検査を行い、マーキングによる外観検 査を行うことを義務付けている.

2-2-6 基準内容比較一覧および道路橋における各基準の改定年表

表 2-1-1 に示した基準の内容を一覧で整理したものを表 2-2-6,7 に示す.また,道路橋については, 基準の改定年表を表 2-2-8,9 に示す.

一覧表は、施工基準として最も細部にわたって項目が整理されていた S59 ボルト標準の項目を基に、 **表 2-1-1** に記載される基準の内容がそれらの項目について記載されているかを確認し、一覧表として整 理をおこなった.また、施工方法の違う高力六角ボルトのトルク法およびナット回転法とトルシア形高 力ボルトで分けて一覧表の作成した.

道路橋に関する各基準の改定年表については,基準の改定に伴い変更になった項目や基準の変更に起因した高力ボルトに関する諸問題を,時系列に沿って整理した.

表2-2-6 高力六角ボルトにおける関連基準内容一覧表

大項目	中項目	小項目	S48道路橋示方書(道路橋会) ※15章 施工 15.4.6 高力ボルトの項にて確認	S59年高力ボルトに関する要領・規格集(道路協会)	H24道路橋示方書(道路協会) ※18章 施工 18.5 高力ボルトの項にて確認	H27銅道路橋施工便覧(道路協会)	H29道路橋示方書(道路協会) ※付録資料2-4および2-5 を含めて確認	H21.7鉄道構造物等設計標準·同解說【鋼·合成構造物】 (鉄道総研)	2003高力ボルト接合設計施工ガイドブック (建築学会)	2016高力ボルト接合設計施工ガイドブック (建築学会)
	よい 孝二	トルク係数値の平均値 トルク係数値の変動係数		0.110~0.160 5%以下		0.110~0.160 5%以下	0.110~0.160 5%以下		0.110~0.150	0.110~0.150
	セット諸元	20℃あたりの温度炎化に 対する1製造ロットのトルク 係物の亚物績の変動	-	出荷時トルク係数の平均値5%以下	-	出荷時トルク係数の平均値5%以下	出荷時トルク係数の平均値5%以下	-	-	-
ボルト・ナット および座金		保管方法	ボルトのセットは、工場出帯時の状態が現場施工時まで保たれて いるように運搬および包装、保管に注意しなければならない	工場包装のまま保管庫に保存 間などの湿気を与えない 出荷から施工までの期間を短くする	現場搬入時,工場での検査成績書と照合し,品質の保証された ものであることを確認する 工場包装の主保存 雨などの温気を与えない 出荷から施工までの期間を短くする	現場搬入時,工場での検査成績者上照合し,品質の保証された ものであることを確認する 工場の認めことを確認する 正などの運気を与えない 出から施工主での期間を埋くする 向上出債後6・月以上接過した場合,潤清油の不足や劣化によ る品質及び施工性やの底下,発帯がないことを確認するとともに、 締付軸力,トルク係数値の再検査を行うことが望ましい	現場職入時,工場での検査成績書と照合し,品質の保証された ものであることを報告では 工場登録のまと報告定に保存 耐たどの湿気を与えない 出荷から施工までの期間を短くする	現場種入時,工場での検査成績書と照合し、品質の保証された ものであることを確認する できるだけ工場応速の主体停着庫に保存 雨だの増減なられない 出税から施工までの期間を短くする 保管期間にはた好な状態を保った場合か月を自安 ボルト類の予備数は下表のとおり	現場搬入時,工場での検査成績書と照合し,品質の保証された ちのつてあることを確認する 工場包装のま料客庫に保存 (相色箱の強度を踏まえて,積上 げる箱の数に留意して保管) 前などの湿気を与えない	現場搬入時,工場での検査成績書と照合し,品質の保証された ものできることを確認すで 工場包装のま実保管確に保存(相包箱の強度を踏まえて,積上 げる筋の数に留意して保管) 雨などの運気を与えない
		すべり係数値	0.4以上	0.4以上	接触面を塗装しない場合:0.40 接触面に無機ジンクを涂装する場合:0.45	接触面を塗装しない場合:0.40 接触面に無機ジンクを涂装する場合:0.45	接触面を塗装しない場合:0.40 接触面に無機ジンクを涂抜する場合:0.45	0.4以上	0.45 ただし、条件として、自然発生の赤さびによる場合、プラスト処理	0.45 ただし,条件として、自然発生の赤さびによる場合、プラスト処理
接合面	接合面の処理	接触面の留意事項	汚れ、黒皮、鰆びなどは十分に除去する	汚れ。黒皮、錆びなどは十分に除去する	済れ、黒皮、錆びなどは十分に除去する 無機ジンクを塗装する場合の条件が明記 書・は5.2 無数ジンクリッチベイントを参加する場合の条件 電動に割みたりの最小を危険数群 時間の自定を受きない。 電気の自定を受きない。 一般のもし、 電気を含むすを受きない。 一般のもし、 一般のものに、 一般のものに、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のもので、 一般のの、 一般のの、 一般のの、 一般のの、 一般のの、 一般のので、 一般のので、 一般ののの、 一般のの、 一般ののの、 一般のの、 一般ののの、 一般ののの、 一般ののの、 一体ののので、 一般ののので、 一般のので、 一般ののの、 一般のので、 一般のので、 一般ののので、 一般のので、 一般ののので、 一般ののので、 一般ののので、 一般ののので、 一般ののので、 一般ののので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般ののので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般のので、 一般ののので、 一般ののので、 一般ののので、 一般ののので、 一般ののので、 一般ののので、 一般のののので、 一般ののので、 一般ののので、 一般ののので、 一般ののので、 一般ののので、 一般のののので、 一般ののので、 一般ののので、 一般ののので、 一般ののので、 一般ののので、 一般ののので、 一般のののので、 一般ののので、 一般のので、 一般ののので、 一般ののののので、 一般ののので、 一般ののので、 一般ののので、 一般のののので、 一般のののので、 一般のののので、 一般ののので、 一般ののので、 一般のののので、 一般のののので、 一般のののので、 一般のののので、 一般のののので、 一般のののので、 一般のののので、 一般ののので、 一般ののので、 一般ののので、 一般のののののので、 一般のので、 一般ののので、 一般ののののののののので、 一般ののので、 一般のののののののので、 一般のののののののののののののののののののののののののののののののののののの	 汚れ、黒皮、錆びなどは十分に除去する 無機ジンクを塗装する場合の条件が明記 ■ 二 15.2 単機ジンクリッチペイントを塗まする場合の条件 単 目 条 約 理 ● 目 ● ● 約 理 ● 目 ● ● 約 理 ● ● ● ● ● 理 ● ● 理 ● ● 理 ● ● 理 ● E ●	行れ、黒皮 朝びなどは十分に除去する 無機ジングを塗装する場合の条件が明記 電気 電気 電気 電気 電気 電気 電気 電気 電気	短期耐久型塗装系の場合はプラスト等により黒皮、錆びなどは十 中期・長期耐久型塗装系の場合は、厚原型 単期・長期耐久型塗装系とに可能体性額材の場合は、厚原型 	による場合、先州処理による場合のいすれか 行れ、異点、伴きさいなどは十分に決まする プラハに建築環境をの。=私以上Rには川自らのにおける長 大葉をを大きの構成して、ハットプラハは含たばグリハでラハ まする「デールでクロジーの保護が得る」れないたがあるか あ不明 薬剤地蔵は使用する薬剤の管理事項について良く知った上で 用いなければならない	にして場合、条何処理にして場合のいすれか 一方れ、異点、浮きさびなどは十分に除まする プラストは豊重組ませんの。中には上には初きしめのにおける最 大喜さを大すな問題して、ションナラストはざからゲラスト 注きなイナンプラストは苦きインタの最終が見るしないとはざからなう たます。 なずの「 電気処産は使用する業素の名誉事実について良く知った上で 用いなければならない
<i>繼</i>]] 定	継手の肌すき	継手の肌すき	部材等に活動を加えるようにする くい違いの出た。部材を活動でする場合は下表のとおりとする	部材等と派技板は密着するようにする	業材等と原始統体者著するようにする	お材単し原始的な名誉するようにする	裁判等と原始的は恋愛するようにする		新村場と活動的はあまするようにする 数十多ジル5番会、フィラーを導入し数十多シューロンドにする(そ の巻合、開面共和村の掛合面と開稿の状態にする)	新秋季と消費扱は書書するようにする 私すきがある場合、フィラーを構入し私すきを1mm以下にする(弓 の場合、両面共高林の接合面と消除の状態にする)
	測定器具の検	軸力計の検定回数	_	現場搬入時に1回 搬入後は3ヶ月に1回	現機能入降に1回 能入後は3ヶ月に1回	現勝權入時に1回 陳入後は3ヶ月に1回	現機能入時に1回 絶入後335月に1回	使用約に1回 開入後は3ヶ月に1回	-	2
	Æ	軸力計の軸力の範囲	-	基準となる計測機器が示す値の±3%以内	「ハイアメンテロに見たいの」	第二日のアレンテは32月に1回) 基準になる計測機器が低す値のよ3%以内 環境地入路に1回	(COUPE / 2010月に18) 基準となる計測情報が除す値のよりも以内 単価値13時に190	(パパンジンプは10月に1回) 基準となる計測機器が示す進めた3%以内 環境等3時に100	基準となる計測機器が示す値の上2%以内	基準となる計測機器が示す値のた2%以内
	締付け機の検 定	検定回数とタイミング 出力トルクの変動係数	-		· · · · · · · · · · · · · · · · · · ·	輸入後は3ヶ月に1回 事業となる計画場合の支付の1年日下	取入後は3ヶ月に1回 軍事となる計測検算が外す彼の4%以下	輸入後は3ヶ月に1回 事業となる計測体器が示す値の4%以下	-	-
		締付け機の調整のタイミ ング	適当な時期に精度を確認する	締付け機の調整は毎日作業開始前に実施 記録計により出力トルクを記録	-	得付け様の展開は各日作業開始時に実施	純付け接の調整は毎日作業開始期に実施	純付け後の観察は毎日作業開始的に実施	得付け様の調整は日ごと、節ごとなどに実施が望れい。	線行け場の調整は日ごと、熱ごとなどに実施が望ましい
(締付け機の調整の方法	-	その日に締付ける予定の一施工ロットごとに無作為に抽出した5 本以上の供款パルと用いて実施 (同一製造ロックのボルを頂明とするが、トルク係数の平均値の 差が554以下である場合は他製造ロットを同一としてもよい)	м. М	その日に編件ける予定の一度エロッパごとに集作為に抽出した5 本以上の便秘でから使用いて実施 (第一数違わっかのからを開いたて高いなの早時違の 重が5%以下である優合は危難違いかを同一としても2×>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	その目に続けが多手度の一覧エロットことに要作為に加出した5 年以上の方の小を閉いて真智 (環境で初めて使用する場合、10~のは実度の世話がられことる 調整を行い、2日日以降はから形形かないて、調整進が手れて いないなどない構築する方式でよい)	その日に時付ける予定の一覧エロ小ごとに発作為に抽出した3 本以上のポルトを得いて実施	その目に時付ける予定の一覧エロットごとに集作為に施出した5 本以上のの小を用いて高階	
	締付け機の調 整	締付け軸力の平均値の範 囲	標準ホルト電力が均一に導入されるよう線の行けトルクを調整し て行わなければたらない (平均値は未提示)	5本以上の供求ボルトの範囲の		STALL STALL <th< td=""><td>B+3 ようご(PMFC)のイヤン(MB2/2)/ キャリ語(D+3) ドン(MB2) * BF2-5.2 #101146+345,049230 ##2-5-0年後日、10月1146+345,049230 ##2-5-0年後日、2015 ##2-5-0</td><td>エキューション (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</td><td>Diff. L. Comparison <t< td=""><td>S-F-L_2C (NIFEGO/F/2007)(0-9) (0-9) (0-9) S-F-L_2C (NIFEGO/F/2007)(0-9) S-F-L_2C (NIFEGO/F/2007)(0-9)</td></t<></td></th<>	B+3 ようご(PMFC)のイヤン(MB2/2)/ キャリ語(D+3) ドン(MB2) * BF2-5.2 #101146+345,049230 ##2-5-0年後日、10月1146+345,049230 ##2-5-0年後日、2015 ##2-5-0	エキューション (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Diff. L. Comparison Comparison <t< td=""><td>S-F-L_2C (NIFEGO/F/2007)(0-9) (0-9) (0-9) S-F-L_2C (NIFEGO/F/2007)(0-9) S-F-L_2C (NIFEGO/F/2007)(0-9)</td></t<>	S-F-L_2C (NIFEGO/F/2007)(0-9) (0-9) (0-9) S-F-L_2C (NIFEGO/F/2007)(0-9)
		ボルトの締付け方法	ナットを回して行うことを原則とする	ナットを回して行うことを原則とする	ナットを確して行うことを原則とする	ナットを厳して行うことを原則とする	ナットを消して行うことを原則とする	ナットを聞して行うことを原則とする	ナットを続して行うことを原則とする	ナントを割して行うにとを展開とする。
		予備締め	-	締付けボルト軸力の60%程度 予備締め後にはボルト、ナットおよび座金にマーキングを実施す	線付けざんや戦力の60%程度 予備線の後にはポルト、ナットおよび協会にマーキングを実施す	時付けポルト載力に60%程度 予備部の後にはポルト、ナットおよび協会にマーキングを実施す	時代ナポルト載力の60%程度 予備等の後にはポルト、ナットおよび協会にマーキングを実施す	線付けポルト載力の60%程度 予備線の後にはポルト、ナットおよび協会にマーキングを実施す	予備線の後にはポルト、ナットお2 U座金にマーキングを実施す ス	予備線の後にはおらり、ナットおよび温金にマーキングを実施す
		予備締め (ナット回転法)	接触面の肌寸きがなくなる程度にトルクレンチで締めた状態,あ るいは組立用スペナで力いっぱいしめた状態 産どの2014年11歳小が2021年2月21年5月19日の	る (本規準ではトルク法のみ記載されている)	○ 酸酸氢の数子をおなくなる程度にしゃクレンチで減かた状態、あ るいは磁点用ネパチで方いっぱいしめた状態 際者の容易がくいめたり返去したといい違いける。	● 植物語の数すまがなくなる程度にトルテレンチで詰めた共能。あ あいは結立用ネパナで方いっぱいこめた状態 ■まの時時でいまった流言とたこうにはかけた	● 接触室の数十をがなくなる理愛にトルパンンチで編めた状態、あ あいな確定用スパナで方いっぱいこめた状態 数をの数数41人と動力の高としたことがで通わせる	○ 総空用スペナで力いっぱいしめた状態 ただし、運動変化のっさだららの一次相応では200,22では約 150021mm、NE4で約200021mmの営業トンク値が配着されてい 支 用金の取取ポイム最大の成正とれたたりに提出する。		
締付けおよび 検査	ボルトの締付 け	設計ボルト軸力	(大角)ルク法の場合,総行1元ルト軸力は設計ボルト軸力の10% 増を標準) 	記載なし	(大会)トルク法の任合、副付けがルト報力に記録すぶんト報力の10% 増生推測 産ー18.5.3 設計ボルト報力 1000 日本の時の「133 1010 日本の時の「133 1011 日本の時間の「133 1011 日本の時の「133 1011 日本の時の日本の時の「133 1011 日本の時の日本の時の日本の時の日本の時の日本の時の日本の時の日本の時の日本の時	(内角)ふう(治の)(滑合)(滑合)(滑合)(滑合)(滑合)(滑合)(滑合)(滑合)(滑合)(滑合	 (大角)から少法の装合、銀行さポム・細点512数計式なり幅かの10% 増え(増加) (大角)から少法の装合、銀行さポム・細点5(A) (本ット かじつか中び 追加オポムト細方(A) (本ット かじつか中び 追加オポムト細方(A) (本ット かじつか中び 追加オポムト細方(A) (本ット かじつか中び 100 (本ット かじつかり) (本ット かじつか中び 100 (本ット かいうかい) (本・ホット かいうかい) (本・ホット かいうかい) (ホット かいかい) (ホット かいかい) (ホット かいかい) (ホット) (ホット)	(大会)にかう法の 協会: 続けたざない 協会:(法会)にお会けがらった続けの(100) 通信(第3) 通信(第3) ALLI RANGE PRESIDENT ALLI RANGE PRESIDENT	$ \begin{array}{c} (177) + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} \leq $	(1999年1-2-32年6年度)、開催用人の動力は数数456-4展力 100増を開始の953154()() 第33 (4994-3405(14)-1825-2689-94-183 (481-482) 第33 (4994-3405(14)-1825-2689-94-183 (481-482) (4994-34-183 (481-483)) (1995年1-183) (1995 1-183) (
		締付けの順序	ボルトの締付けは、連結板の中央ボルトから順次場部ボルトに向 カップ行い、2度締めを行う	-	ボルトの編付けは、連結板の中央ボルトから順次端部ボルトに向 かって行い、2度編めを行う(142道示から下図順手で規定)	ボルトの締付けは、連結板の中央ボルトから順次端部ボルトに向 かって行い、2度編めを行う	ボルトの締付けは、連結板の中央ボルトから順次端部ボルトに向 かつて行い、2度締めを行う	ボルトの締付けは、連結板の中央ボルトから順次端部ボルトに向 かって行い、2度締めを行う	-	-
		本締め (ナット回転法) 本統めの統付け記録	予備締めを行った後、以下の回転角を与える (ボルト載は大)、同面が直角上には市が高角で他面が1/20 以下の傾斜の場合 ボルト長が径の留またに20cm以下:1/2回転(180度) ボルト長が径の留またに20cm以上:2/2回転(240度) ②両面と1/20LFの傾斜の場合 ・ボルト長にかかわらず3/4回転(270度)	(本規準ではトルク法のみ記載されている) お毎日を用いてポルトを放の締任けご帰を取る	子僧蔭ゆを行った後、以下の回転角を与える a)ボルト長が径の5倍と以下の場合:1/回転(100°) 1:30° b)ボルト長が径の5倍を超える場合:施工条件に一致した予備試 厳によって目標回転角を決定する	子備締めな行った後、以下の回転角を与える a)ボルト長が径の5倍以下の場合:1/20廠(120°)と30° b)ボルト長が径の5倍を超える場合:施工条件に一致した予備試 験によって目標回転後決定する	子備締めを行った後、以下の回転角を与える a)ボルト長が径の5倍を超える場合:1/回転(120)、)±30° b)ボルト長が径の5倍を超える場合:施工条件に一致した予備試 験によって目標回転(身を決定する	子備締めを行った後、以下の回転角を与える a)ボルト長が径の5倍以下の場合:120 ± 200 b)ボルト長が径の5倍を超える場合:施工条件に一致した予備試 験によって目標回転角を決定する	子備除めを行った後、以下の回転角を与える a)ボルト長が径の5倍と耳の場合1,700歳(1/20)よ30 ⁻ b)ボルト長が径の5倍を超える場合:実際の条件に基づいた実験 を行って、1次都付けを含めて施工条件を決める	子備締めな行った後、以下の回転角を与える a)ボルト長が径の5倍以下の場合:1,2回転(120°)と30° b)ボルト長が径の5倍を超える場合:実際の条件に基づいた実験 を行って、1次部付けを含めて施工条件を決める
		締付け条件	-	降雨時は実施不可 締付け後,速やかに実施	-	降雨時は実施不可	降雨時は実施不可	-	-	-
		検査のタイミング	締付け後, 早 い 時期に実施	(記録紙による場合はホルト全数で実施)	総付け後、速やかに実施	締付け後、進やかに実施	締付け後,進やかに実施	締付け後、速やかに実施	締付け後,速やかに実施	締付け後、速やかに実施
	検査	締付けトルクの留意点, 検 査基準	締め付けに際しては、締め付け完丁が確認できるように印をつけ ちものとする トルク法による場合は、トルクルンチなどによる検査を行うものとす る、この場合の総行け検査数は存がに解じっいてボルトの本数 の10%を標準とし、その検査時期はボルト締め付け後すみやかに 行うのがよい 回転法による場合は、マーキングによる外観検査を行うものとす る.	ボルト全数に締忘れ、共回9等の異常があってはならない 各ボルトの縮付けトルクは濃度時の縮付けトルクと著しく扱いって はならない、営い送売例の一紙手ごとの縮付けトルク2濃時外 ルクの平均値の差が5%程度以上見つ、絶手の各ボルトの縮付けト ルクが調整時の縮付けトルクの平均値と10~15%程度以上異な る場合)	ボルト全数に締ちれ、共回9等の異常があってはならない 各ボルト類の10%のボルト本数を標準として、トルクレンチ締付け 検査を行う(合格基準はキャリブレー>コン時の設定トルク値± 19%範囲内) 不合格の場合、信葉のボルトを抜き出し再検査で不 合格の場合、その酸のボルトを数さ始至 所定締付けトルクを下回る場合、①所定トルクまで増し締め ②所定締付けトルクを10%超えたボルトは交換し、結底す	ボルト全数に結忘れ、共回り等の異常があってはならない 各ボルト群の10%のボルト本数を標準として、トルクレンチ統付け 検査を行う(合格基準はキャリブレーション時の設定トルク値主 10%被囲内) 不合格の場合、倍額のボルトを抜き出し再検査で、 合格の場合、作額のボルトを抜き出し再検査で、 所定縮付けトルクを下回る場合、①所定トルクまで増し締め ②所定縮付けトルクを10%超えたボルトは交換し、縮直す	マーキングを目視で全数検査 実回りのボルトは取替え、ナット・座金の裏返し取付がかった場合 はボルトセック取替えて統付ける 合格工作サイワンーン2000の取り入り、一般の 合格の場合、倍数のボルトを抜き出し再検査で不 合格の場合、その那のボルトを数を検査 所定続付けトルックを下回る場合、①所定ルーンまで増し締め ②所定続付けトルックを10%超えたボルトは交換し、統直す	検査方法は、①トルクレンチにより、各ボルト群の10%のボルト本 数を標準として締め付け検査、②自動記録計にて全数検査の レッドれられてて実施 合格基準はキャリプレーション時の設定トルク値±10%範囲内	-	-
		締付けトルクの留意点, 検 査基準 (ナット回転法)	全数についてマーキングによる外裏検査を行い、締付け回転角 が規定する範囲内であることを確認する	- (本規準ではトルク法のみ記載されている)	全数についてマーキングによる外観検査を行い、締付け回転角 が規定する範囲内であることを確認する 回転角が7度するのに引かで回転角すで担縁的を実施する 回転角が過大なものについては新しいポルトセットに取替え締直 す	全数についてマーキングによる外親検査を行い、締付け回転角 が規定する範囲内であることを確認する 回転角が不足するのは内定回転角まで担保約を実施する 回転角が過大なものについては新しいボルトセットに取替え締直 す	全数についてマーキングによる外親検査を行い、締付け回転角 が規定する範囲内であることを確認する 回転角がに見するのは万定回転角まで増し続めを実施する 回転角が過大なものについては新しいボルトセットに取替え締直 す	全数についてマーキングによる外観検査を行う 締付け過ぎたポルトまたは締付け不足のポルトについては、それ ぞれ取替えや増し締め等の処理を行う	マーキングによるナットの回転量を目視によって検査する 所定回転角を超えたものは取り替える 所定回転角が不足しているのに注意い確かする 共回りしたものはあたしいポルトセットに取り替えて締め直す	マーキングによるナットの回転量を目視によって検査する 所定回転角を超えたものは取り替える 所定回転角が不見といても分のは違い締めする 共回りしたものは新しいポルトセッドに取り替えて締め直す

表2-2-7 トルシア形高力ボルトにおける関連基準内容一覧表

大項目		小項目	548道路橋示方書(道路協会) ※15章 施工 15.4.6 高力ボルトの項にて確認	S59年高力ボルトに関する要領・規格集(道路協会)	H24道路橋示方書(道路協会) ※18章 施工 18.5 高力ボルトの項にて確認	H27鋼道路橋施工便覧(道路協会)	H29道路橋示方書(道路協会) ※付録資料2-4および2-5より確認 (S14Tの追加)	H21.7鉄道構造物等設計標準·同解説【鋼・合成構造物】 (鉄道総研)	2003高力ボルト接合設計施工ガイドブック (建築学会)	2016高力ボルト接合設計施工ガイドブック (建築学会)
		7係数値の平均値	-	- 下表の値を満足していることを確認する	-	_	- 下表の値を満足していることを確認する	-	0.110~0.170程度 下表の値を満足していることを確認する	0.110~0.170程度 下表の値を満足していることを確認する
	常温時のセッ	いの締付軸力の平均値と標 準偏差	8-0, 497 0-0 10 10 10 10 10 10 10 10 10 10 10 10 10	T 24/18/2 (19/2) (1/2) (1/2) (2/2) (1	#8.14/ #6.07	-		-	No. No. <td></td>	
ポルト・ナット および座金	ŀ	出荷時検査	-	-	-	-	工場出荷時に各製造ロットごとに軸力試験の実施を原則と する ボルト軸力の温度依存性に関する試験については一納入 単位につき一製造ロットを選んでの実施を標準とする	-	-	-
		保管方法	-	-	現場搬入時、工場での検査成績書と照合し,品質の保証 されたものであることを確認する 工場包装のまま採管庫に保存 雨などの選及を与えない 出荷から施工までの期間を短くする	現場搬入時、工場での検査成績書と照合し、品質の保証 されたちのであることを確認する 工場包装のであることを確認する 用などの湿気を与えない 出荷から施工までの期間を短くする 向上出荷後のヶ月以上基通した場合、潤滑油の不足や劣 化による品質及び施工性の低下、発錆がないことを確認す るとともに、締付軸力、トレノ保教値の再検査を行うことが 望ましい	現場搬入時、工場での検査成績書と照合し,品質の保証 されたものであることを確認する 工場包装のまま保管庫に保存 雨などの選及を与えない 出荷から施工までの期間を短くする	現場報入時、工場での検査成績書と照合し、品質の保証 されたちのであることを確認する できるだけ工場包装のまま保管庫に保存 雨などの違気を与えない 出荷から施工までの期間を短くする 保管期間は良好な状態を保った場合を月を目安 ボルト類の予備数は下表のとおり	現場搬入時、工場での検査成績書と照合し、品質の保証 されたものであることを確認する 工場包装のまま保管確に保存(棚包箱の強度を踏まえて、 税上けて着印数に留危して保管) 雨などの湿気を与えない	現場搬入時、工場での検査成績書と照合し、品質の保証 されたものであることを確認する 工場包装のまま保管庫に保存(棚包箱の強度を踏まえて、 税上げち着の数に留意して保管) 雨などの湿気を与えない
		すべり係数値	-	0.4以上	接触面を塗装しない場合:0.40 接触面に無機ジンクを塗装する場合:0.45	接触面を塗装しない場合:0.40 接触面に無機ジンクを塗装する場合:0.45	接触面を塗装しない場合:0.40 接触面に無機ジンクを塗装する場合:0.45	0.4以上	0.45 ただし,条件として,自然発生の赤さびによる場合,プラス ト処理による場合,薬剤処理による場合のいずれか	0.45 ただし,条件として,自然発生の赤さびによる場合,プラス ト処理による場合,薬剤処理による場合のいずれか
接合面	接合面の処理	接触面の留意事項	-	汚れ,黒皮,錆びなどは十分に除去する	汚れ、県友、前びなどは十分に除去する 無機ジンクを塗装する場合の条件が明記 表-14.5.2 無償ジンナリッチベイントを要要する場合の条件 備していた。 「「「「「「」」」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	 汚れ、県友、貸びなどは十分に除去する 無機ジンクを塗装する場合の条件が明記 書=1.5.1 単機ジンク・オペイントを変更する場合の条件 第二日本 第二日本	 汚れ、現皮、錆びなどは十分に除まする 無機ジンクを塗装する場合の条件が明記 売まま 第8シンデナット・イントを意味てる場合の条件が明記 売まま 第8シンデナット・イントを意味てる場合の参考 第一次のから、日本ののから、日本ののから、日本ののから、日本ののから、日本ののからまたので、 第一次のから、日本ののから、 第二次のからまたので、 第二次のからまので、 第二次のからまので、 第二次のからまので、 第二次のからまので、 第二次のかられていたので、 第二次のからまので、 第二次のかられていたので、 第二次のからまので、 第二次のからまので、 第二次のかられていたので、 第二次のからまので、	短期耐久型塗装系の場合はプラスト等により展皮、錆びな とは十分に除去する 環型無機シングリッチベインにを送作するものレナる 環型無機シングリッチベインにを送作するものレナる 事業であります。 事業であります。 事業であります。 事業であります。 事業であります。 事業であります。 事業であります。 事業であります。 事業であります。 事業であります。 事業であります。 また、日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、	汚れ、黒皮、浮きさびなどは十分に除まする プラベは支援の超起を50 μmk2以上になればB 0001におけ る最大高さを示す)を前提として、ショットプラストまたはグ リットプラストする(サンドプラストは研究す、切像数が得ら はないことなったしたホティー	汚れ、黒皮、浮きさびなどは十分に除まする プラベトは表面超えるの」ル理な以上になればB 0001におけ る最大高さを示す)を前提として、ショットプラストまたはグ リットプラストする(サンドプラストは所定す、切像数が得ら したいことがあるため下す 素単に思い、用する素単の留素を考えるので したが、したいことがあるためです。
	継手の肌すき	継手の肌すき	-	部材等と添接板は密着するようにする	能材毎と原摘板は色量するようにする	能材等と影響板に含意するようにする	部材等と添換板は密修する25にする		部材等と添枝板は思量するようにする 数すきがある場合、フィラーを挿入し載すきをIam以下に する(その場合、商面具高材の接合語と同様の状態にす る)	部材等と添換板は若着するようにする 肌すきがある場合、フィラーを挿入し机すきをInnai/Tic するくその場合、両面角部材の接合面と開催の状態にす ろ)
		軸力計の検定回数	-	現場搬入時に1回 搬入後は3ヶ日に1回	機構像入時に1回 第入後は3と目に1回	- 機構施入時に1回 等入後は3ヶ月に1回	関連搬入時に1回 振入会けたと見て1回	関連搬入時に1回 換入後は3を目に1回	1	
	軸力計の検正	軸力計の軸力の範囲 -		基準となる計測機器が示す値の±3%以内	基準となる計測機器が示す種の土3%以内	基準となる計測機器が示す値の±3%以内	基準となる計測機器が示す値の±3%以内	基準となる計測機器が示す値の±1%以内	基準となる計測機器が示す値の±3%以内	基準となる計測機器が示す値の±3%以内
		現場予備試験の方法	-	その日に使用する予定の1つの製造ロットから5組の供試 セットを無作為に抽出して試験することを標準とする	その目に使用する予定の1つの製造ロットから5組の供飲 セットを無性為に抽出して試験することを標準とする	その目に使用する予定の1つの数値ロットから3組の単数 セットを制作為に抽出して数数することを標準とする	その目に使用する予定の1つの数値ロットさらら組の換数 セットを解体為に抽出して試験することを標準まする	その目に使用する予定の1つの製造ロットから採用の供飲 セットを解除為に抽出して飲養することを標識とする	その目に使用する予定の1つの製造コットから3組の併設 なットを確保為に施出して試験することを標準とする	その目に使用する予定の1つの製造ロットから3組の挑戦 セットを制作為に地出して試験することを標準とする
	現場予備試験	締付け軸力の平均値の範 囲		Toolman (1) (1) (2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1) (1) (2) (2) (1) (1) (1) (2) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	い(10~20℃の構合) 動-出生4 空温時 (10℃-30℃)の器付けボルト地力の平均増 セット ねじの呼び (加速ロットのセットの時付け) ボルト地力の不可能(0.00) 5107 M10 112~00 5107 M10 212~00	1×1(10~30℃の場合) 書 田 2.5.4 年編時(10-30℃)の得らけオネト級力の年時度 セット & LORF 07 1年点マットウキットの時日 11年上本協力の早時度(05) 11日上市協力の早日日市協力の早時度(05) 11日上市協力の早日日市協力の 11日上市協力の早日日市協力の 11日上市協力の年間(05) 11日上市協力の日日市協力の 11日上市協力の 11日日 11	1/(10~10℃の場合) B-20.8.4 第201 00℃~30℃ 000 (11.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	(1/1/2 ~ 20 ℃の場合) 第111 MARTICAL (40:04 Veg) 第111 MARTICAL (40:04 Veg) 第111 MARTICAL (40:04 Veg) (1/1/2) <	5+(10~30℃の場合) ### ##////////////////////////////////	L (1(10~30℃ク場合)) R18 EBLAGIALASYTELIAATUELASIE (181.186
		規定を満足しない場合の 試験方法	-	上記(軸力平均値)を満足しない場合,同じ製造ロットにて 倍数の試験を行う それでも満足しない場合,その製造ロットのセットを使用し てはならない	-	_	上記(軸力平均値)を満足しない場合、同じ製造ロットにて 倍数の試験を行う それでも満足しない場合、その製造ロットのセットを使用し てはならない	上記(軸力平均値)を満足しない場合、同じ製造ロットにて 倍数の試験を行う それでも満足しない場合、その製造ロットのセットを使用し てはならない	上記(軸力平均値)を満足しない場合、同じ製造ロットにて 倍数の試験を行う それでも満足しない場合、その製造ロットのセットを使用し てはならない	上記(軸力平均値)を満足しない場合、同じ製造ロットにて 倍数の試験を行う それでも満足しない場合、その製造ロットのセットを使用し てはならない
		ボルトの締付け方法	-	専用締付け機で行う	専用締付け機で行う	専用締付け機で行う	専用締付け機で行う	専用締付け機で行う	専用締付け機で行う	専用締付け機で行う
締付けおよび 検査	、 ボルトの締付 け	子備結め	-	縮付けボルト軸力の60%程度	縮付けボルト軸力の60%程度 子備縮め後にはボルト, ナットおよび座金にマーキングを 実施する	縮付けボルト軸力の60%程度 予備締め後にはボルト、ナットおよび座金にマーキングを 実施する	縮付けボルト軸力の60%程度 予備締め後にはボルト、ナットおよび座金にマーキングを 実施する	縮付けポルト軸力の60%程度 子備締め後にはポルト、ナットおよび座金にマーキングを 実施する	トルク値100~200N・mの範囲で決める(下図の範囲内) 予備締め後にはボルト、ナットおよび座金にマーキングを 実施する	トルク値100〜200N・mの範囲で決める(下図の範囲内) 予備締め後にはボルト,ナットおよび座金にマーキングを 実施する
					ボルトの締付けは,連結板の中央ボルトから順次端部ボルトに向かって行い、2度締めを行う(H2道示から下図順序で	ボルトの締付けは、連結板の中央ボルトから順次端部ボル トに向かって行い、2度締めを行う	ボルトの締付けは、連結板の中央ボルトから順次端部ボル トに向かって行い、2度締めを行う	ボルトの締付けは、連結板の中央ボルトから順次端部ボル トに向かって行い、2度締めを行う		
		締付けの順序	-	記載なし	現定)				-	-
		締付け条件	-	降雨時は実施不可	-	降雨時は実施不可	降雨時は実施不可	粗豆用スハナで力いつばいしめた状態 ただし、溶融亜鉛めっきボルトの一次締めではM20,22で は約150kN・mn、M24で約200kN・mnの管理トルク値が記 載されている	降雨時は防水シートなどで覆って養生する	降雨時は防水シートなどで覆って養生する
		検査のタイミング	-	記載なし	締付け後,速やかに実施	締付け後,速やかに実施	締付け後,速やかに実施	締付け後,速やかに実施	締付け後,速やかに実施	締付け後,速やかに実施
	検査	ピンテール切断の目視確 認	-	全数にて検査	全数にて検査 マーキングによる外観検査	全数にて検査 マーキングによる外観検査	全数にて検査 マーキングによる外観検査	全数にて検査 マーキングによる外観検査 (ビンテールの凄新が破断している、ボルトの余長がナット より出ている、ビンテール被断面が鋭利な形状となってい ない、共回りがなく回転量が増っている)	全数にて検査 マーキングによる外観検査	全数にて検査 マーキングによる外観検査

西暦	和曆	基準の変遷	概要
1964 年	昭和 39 年	JIS B 1186 制定	摩擦接合用高力六角ボルトの JIS 規格化 ボルトの等級:F7T,F9T,F11T,F13T ねじの呼び:M12,M16,M20,M22,M24 W1/2,W5/8,W3/8,W7/8,W1
1965 年	昭和 40 年		F13T ボルトで遅れ破壊が発生する
1966 年	昭和 41 年	日本道路協会: 鋼道路橋高力ボルト摩擦接合 設計施工指針 発行	ボルトの等級:F9T,F11T ねじの呼び:M20,M22,M24 W3/4,W7/8,W1 接合方法:摩擦接合 すべり係数:0.4 接合面処理:無塗装,50s相当の粗面 締付け方法:トルク法 標準ボルト軸力:設計ボルト軸力の10%増 一次締め:80%程度 締付け検査:各ボルト群の10%の本数
1967 年	昭和 42 年	JIS B 1186 改定	ボルトの等級:F8T,F10T,F11T ねじの呼び:M12,M16,M20,M22,M24, M27,M30
1971 年	昭和 46 年	日本道路協会: 支圧接合用打込み式高力ボルト の暫定規格 制定	高力ボルト支圧接合に用いる打込み式ボルトを規定 ボルト形状:打込み式高力六角ボルト 打込み式皿ボルト 打込み式丸頭ボルト ボルトの等級:B8T,B10T ねじの呼び:M20,M22,M24
1973 年	昭和 48 年	道路橋示方書 改定	ボルトの等級:F8T,F10T,F11T,B8T,B10T ねじの呼び:M20,M22,M24 接合方法:摩擦接合,支圧接合 接合面処理:無塗装,50s相当の粗面(摩擦接合) 締付け方法:トルク法,回転法(F8T,B8T)
1977 年	昭和 52 年	日本道路協会: トルク法による高力ボルト摩擦 接合継手施工管理要領 発行	 トルク法に記録計を用いた締付け施工管理 ボルトセットの保管について規定 ・1製造ロットの出荷時のトルク係数の平均値 および変動係数を規定 ・測定機器の検定について規定 ・縮付け機械の調整手順を規定 ⇒現場予備試験 ・接合面に無機ジンクリッチペイントを塗装した 試験例についての記述 ・一次締めを 60%程度

西暦	和曆	基準の変遷	概 要
1978 年	昭和 53 年		都市高速道路で F11T ボルトの遅れ破壊が確認される
1979 年	昭和 54 年	JIS B 1186 改定	ボルトの等級:F8T,F10T, (F11T) F11T はなるべく使用しないという意味で括弧書きと なる
1980 年	昭和 55 年	道路橋示方書 改定	ボルトの等級:F8T,F10T,B8T,B10T 締付け検査:自動記録計で原則全数検査,または トルクレンチで各ボルト群の10%の本数
1981年	昭和 56 年		F11T ボルトの製造中止
1983 年	昭和 58 年	日本道路協会: 摩擦接合用トルシア形高力ボル ト規格 制定 トルシア形高力ボルト施工管理 要領 発行	ボルトの等級: S10T ねじの呼び: M20, M22, M24 現場予備試験:その日に使用する全製造ロットの うち,1つの製造ロットから5組の 供試ボルトを抽出 一次締め:60%程度 締付け検査:ピンテールの破断を目視で確認
1990 年	平成2年	道路橋示方書 改定	ボルト等級:F8T,F10T,S10T,B8T,B10T ねじの呼び:M20,M22,M24 接合面処理:塗装しない場合は黒皮を除去して粗面 塗装する場合は無機ジンクリッチ ペイントを使用 トルシア形高力ボルトについて常温時以外(0℃~ 10°,30℃~60℃)の締付けボルト軸力の平均値を規定
1994 年	平成6年	道路橋示方書 改定	
1996 年	平成8年	道路橋示方書 改定	 締付け方法:トルク法,回転法,耐力点法 回転法はボルト長が径の5倍以下に改定 締付け検査:トルク法(HTB)はトルクレンチで 各ボルト群の10%の本数 耐力点法は正常に締付けられたボルト 5本の回転角の平均値に対して±30° を確認
2002年	平成 14 年	道路橋示方書 改定	接合方法:摩擦接合,支圧接合,引張接合(F10T, S10T) 締付け方法:引張接合の締付けはトルク法による
2005 年	平成 17 年	鋼道路橋塗装・防食便覧	トルシア形高力ボルトのピンテール処理
2012年	平成 24 年	道路橋示方書 改定	接合面に無機ジンクリッチペイントを塗装する場合の すべり係数は 0.45
2017 年	平成 29 年	道路橋示方書 改定	ボルト等級:F8T,F10T,S10T,S14T,B8T,B10T ※S14Tの使用は記載される条件を満足する場合のみ

参考文献

- 1) 日本道路協会:道路橋示方書・同解説Ⅱ鋼橋編, 1973.9
- 2) 日本道路協会:高力ボルトに関する要領・規格集, 1984.9
- 3) 日本道路協会:道路橋示方書·同解説Ⅱ鋼橋編,2012.3
- 4) 日本道路協会:鋼道路橋施工便覧, 2015.4
- 5) 日本道路協会:道路橋示方書・同解説Ⅱ鋼橋・鋼部材編,2017.11
- 6) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説 鋼·合成構造物, 2009.7
- 7) 日本建築学会:高力ボルト接合設計施工ガイドブック,2003.12
- 8) 日本建築学会:高力ボルト接合設計施工ガイドブック,2016.5

3. 高力ボルトの統計調査

3-1 調査概要および規定値について

調査は、最近のボルトの実態を把握することを目的として、鉄道建設・運輸施設整備支援機構およ び当部会所属の橋梁製作会社7社の過去10年程の橋梁工事で使用したトルシア形高力ボルトS10T, S10TW (以下両者をさす場合は, S10T(W)), 高力六角ボルト F10T, F10TW (以下両者をさす場合は, F10T(W)), 溶融亜鉛めっき高力ボルト F8T(以下, F8T)を対象に, 検査で用いるボルト製品検査証 明書(図 3-1-1)に記載されている導入軸力またはトルク係数値(以下,検査証明書データ),および 検査時の立会いで行われる軸力確認試験またはトルク係数確認試験の試験結果(以下,立会い試験デ ータ)を調べた.また,架設現場では,施工前に日々1ケース(5本)の導入軸力またはトルク係数値を 確認しており、これらの結果(以下、現場試験データ)を集計し、導入軸力またはトルク係数値の現 状を明確にした.さらに、機械的性質においては、ボルト製品検査証明書に記載されている耐力(0.2% 耐力), 引張強さ(引張強度), 伸び, 絞り, 引張荷重および硬さを調査した. なお, F8T については めっき付着量についても調査した.これらの規定値について表 3-1-1 に示す.耐力,引張強さ,伸び および絞りの4項目は, JIS Z 2241 (金属材料引張試験片)の4号試験片(標点距離 50mm,径14mm) を用いて,2体の試験体の平均値で求められている.耐力とは0.2%耐力であり,引張強さは引張最大 荷重を有効断面積で除した値である。伸びは、破断時の標点間の伸び量を標点距離で除して求め、絞 りは破断面の最小断面積を公称断面積で除して求めている.これに対し、引張荷重および硬さはボル ト製品で試験を行い,3本のボルトの平均値で求められている.引張荷重は製品そのもののボルト (頭 部)の座面にくさび(くさび・テーパー)を入れて引張荷重を載荷し,破断時の荷重値を示している. 硬さは,ロックウェル硬さで示されており,ボルト以外にもナットおよび座金の各製品でも硬さ測定 が行われている. なお, これら試験方法等の詳細については, 文献 1)~3)を参照にされたい.

0.11	L	8	A	7	2	184	1			뤴	品検	查加	明	B		817.0		16 31 Y657	4 J 2	л 52-	28 514-	205	
		1	等 (17	級		数量		次 日 44 日	N IL	ŀ	ftul		ナ	ット	座金	セッ	· ト	外視					
セットロット 番 号	ね	ねじの	おじの		2			香力 N/mm ⁱ	号 武 I 引 張 強 さ N/mm'	i (横び %	絞り %		前 硬さ HRC	要 硬さ HRC	邮 保証 荷重 kN	要面 硬さ HRC	トルク 係数値 平均値	トルク N-m	形状	付	着量	g/	ſ'n ^²
	p	手び	×	、 長	さ		900 以上	1000 1200	14 以上	40 以上	303 以上	27 ~ 38 HRC	35	303	35 ~	$\begin{array}{c} 0.110\\ 0.\widetilde{150} \end{array}$	-	ねじ 精度	ボルト	7	ーット	座金	
C40130FW	1	22	Х	7	0	40	1018	1084	18	70	332	33	27	合格	40	0.132	* *	合格	* *	*	*	* *	
C40200FW		22	Х	8	5	40	999	1066	18	68	328	33	26	合格	40	0.131	* *	合格	* *	*	* *	* 1	
C39370GW	¢	22	X	10	0	4.0	1007	1071	18	69	329	33	25	会務	28	0.129	* *	合格					
33900GW		22	Х	10	5	40	1008	1066	18	67	324	32	27	合格	40	0.127	* *	合格	* *				
しまたま パッ したの事品の	12,	内接	構成で	合 :	+	160 中国本(3)。 特1.たこと	ナッH#AD E記明しま	0.7988 Ť.		10. MA	C0. +>	H31. #	i-still	r#du		\$	70 III	ポルト	株式	6 1	t	「「「「「「「」」	

図 3-1-1 検査証明書の一例

表 3-1-1	機械的性質の規定値	直
---------	-----------	---

			JIS Z 2	2241			制	品		洋	容融亜銷	r∖ □
		耐力	引張 強さ	伸び	絞り	引張 荷重	石	更さ(HRC)	め・ (g/i	っき付着 m ² ,HDZ	音量 (55)
		(N/mm)	(N/mm^2)	(%)	(70)	(kN)	ボルト	ナット	座金	ボルト	ナット	座金
S10T(W)	M22	>000	$1000 \sim$	>14	≧40	≧303	27 - 29	$16 \sim 35$	$35 \sim 45$			
F10T(W)	M22	≦900	1200	≦14			21/~38	$20 \sim 35$		—		_
	M16	≧640		≧16		≥ 126	10 01	10 05	05 45			
БОТ	M20		$800\sim$		> 4 5	≥ 15						
Гð I	M22		1000		≦43	≥ 243	$18 \sim 31$	$10 \sim 35$	$25 \sim 45$		≤550	
	M24					≧283	≥283					

調査数量を表 3-1-2 に示す. 調査は M16 (F8T のみ), M20, M22, M24 の高力ボルトに対して行っ た. 30 データ以上集まった S10T(W)および F10T(W)は M22 の検査証明書データ, 立会い試験データ および現場試験データについて, F8T は M16~M24 の検査証明書データのみについて調査結果をまと めた. S10T(W)のデータ数量は合わせて 2982 であるが, 1 データにつき 5 本のボルトで試験が実施さ れており, 14910 本のボルトから得られたデータである. F10T(W)のデータ数量は合わせて 1350 であ るが, 1 データにつき 3 本 (現場試験のみ 5 本) のボルトで試験が実施されており, 4818 本のボルト から得られた結果である. F8T の調査は, 建設工事で使用したボルトに加えて, 実験で使用したボル トを調査した. データ数量は合わせて 346 であるが, 1 データにつき 3 本のボルトで試験が実施され ており, 1038 本のボルトから得られたデータである.

~~ <i>P P</i>		S10T	S10TW	F10T	F10TW		F8T			∆⊒ட
ノータイ	M22	M22	M22	M22	M16	M20	M22	M24		
検査証明書	実工事	1304	270	612 ^{×1}	239 ^{×1}	69 ^{×1}	30^{*1}	$167^{left 1}$	48^{31}	0771
データ	実験					3^{*1}	3^{*1}	11^{*1}	15^{*1}	2771
立会い試験データ		333	43	38^{*1}	77^{*1}	_				491
現場試験データ		773	259	168	216					1416
合計		2410	572	818	532	72	33	178	63	4678

表 3-1-2 調査数量

(注)1データにつき5本のボルトで実施. ※1のデータのみ3本のボルトで実施しており,合 計21458本のボルトから得られたデータである.

3-1-1 S10T(W)

S10T(W)は、JIS 規格化されておらず,各協会等の規格が適用されている.代表的な規格として,道路橋では日本道路協会¹⁾,鉄道橋では鉄道総合技術研究所²⁾の規格がある.また,建築鉄骨では日本鋼構造協会³⁾の規格を適用している.**表 3-1-3**にボルト軸力管理に関する規定値を示す.軸力は,1 製造ロット5本のボルト軸力の平均値とその標準偏差で規定されているが,常温時以外(非常温時:以降,9°C以下を低温時,31°C以上を高温時として整理した)では軸力のみの管理である.なお,規格では標準偏差で示されているが,実工事では変動係数で示されているケースも多く見られ,これらの規格の標準偏差を変動係数に換算すると,道路橋および鉄道橋では 5.0%,建築鉄骨では 6.9%となる.

	常温時(10℃	常温時以外(*)		
規定	ボルト軸力	抽淮 /百兰	ボルト軸力	
	の平均値	惊퍅偏左	の平均値	
道路橋の規定 ¹⁾	212 - 240	11 5번 5	$207 \sim 261$	
鉄道橋の規定 ²⁾	212 249	11.50	207 201	
建築鉄骨の規定 ³⁾	$212 \sim 256$	16.0以下	$205 \sim 268$	
(小)、 盗田泪 库)と	$0 \cdot c \circ \circ c (k+)$	生活のてい	$[0,\infty)$	

表 3-1-3 トルシア形ボルトの軸力の規定値 (単位:kN)

(*):適用温度は、0~60℃(鉄道橋のみ0~50℃)

3-1-2 F10T(W)

F10T(W)は、JIS B 1186「摩擦接合用高力六角ボルト・六角ナット・平座金のセット」4)で規格化さ れており、表 3-1-4 にトルク係数値に関する規定値を示す. 道路橋示方書では、トルク法による施工 管理を合理的に行うためとしてばらつきが規定されている. S10T(W)とは異なり、トルク係数値は 1 製造ロットの平均値と標準偏差で規定されている.また、温度に関係なく一定であり、トルク係数値 の範囲と標準偏差の上限値で示されている.架設現場では,式(3-1-1)を用いて,日々トルク係数値 の確認を行っている. その手順は、予備試験で使用するボルトの製品検査証明書に記載されているト ルク係数値と導入軸力(締付け軸力=設計ボルト軸力の10%増)から算出したトルクでボルトを締め 付ける、そして、軸力計を用いて導入された軸力とトルクからトルク係数値を算定する、これを5本 のボルトで行い、その平均値からトルク係数値を算定した上でその日のトルクを設定し、そのトルク でボルトの締付け作業を行っている.

表 3-1-4 高力六角ボルトのトルク係数値の規定値

規定	トルク係数値	標準偏差	変動係数
JIS B 1186 ⁴⁾ (鉄道橋・建築鉄骨)	0.110~0.150	0.010以下	Ι
道路橋示方書5)	0.110~0.160	—	5%以下
*1・セットの種粕4			

*I:セットの種類A

$$k = \frac{T}{d \cdot N} \tag{3-1-1}$$

k: トルク係数値, T: トルク(N·m), d: ボルト径(mm), N: ボルト軸力(N)

3-1-3 F8T

めっきボルトは, JIS 規格化されておらず, JIS B 1186の規定値を準用している. そのため, めっき ボルトのトルク係数値に関する規定値はF10T(W)と同じで表 3-1-4 のとおりである.

3-2 ボルト軸力の調査結果

3-2-1 検査証明書

図 3-2-1(a),(b)には,検査証明書で調査したボルトのボルト長およびボルト軸力を頻度分布で示し,図 3-2-1(c)は,ボルト長と軸力の関係を示した.また,表 3-2-1にはこれらの調査結果の集計値を示した.ここで示す標準偏差は,表 3-1-3で示した標準偏差(5本での統計処理結果)と区別するため,標準偏差Aと称し,調査したボルト軸力の統計処理結果を示した.なお,集計できた検査証明書は3社のボルト製造会社のものである.

図 3-2-1(a) に示すように、調査したボルト長は、S10T(W)で 80mm をピークにその前後のものが多 く、最大で S10T が 190mm、S10TW が 160mm、最小で S10T(W)共に 50mm であった.図 3-2-1(b) に 示すボルト軸力も、S10T(W)で 226~235kN の頻度が高く、平均値は S10T で 231.2kN、S10TW で 231.6kN とほぼ目標通り(230kN)の導入軸力であった.表 3-1-1 で示す規定値(212~249kN)との関係を述べると、 最小値は S10T で 217kN と規定の下限値より 5kN 大きく、S10TW で 220kN と 8kN 大きい値であった. 最大値は S10T で 248kN と規定の上限値より 1kN 小さく、S10TW で 244kN と 5kN 小さい値であった. また、各基準 ^{5)~7)}で示されている締付け軸力 226kN(設計ボルト軸力の 10%増し)に対し、S10T で 87%、S10TW で 89%のデータがこれを上回った.

ボルト長の影響を確認するため、図 3-2-1(c)には、ボルト長と軸力の関係を示す.以下、相関関係 を表す図では、プロットが重なっている場合もあり、ここで示す1つの×データは、必ずしも1プロ ットが1調査データとは限らないのでご留意いただきたい.図に示すように、回帰直線は右肩上がり であるが、相関係数はS10Tで0.122、S10TWで0.043と低く、ボルト長と軸力の明確な相関は認めら れなかった.

図 3-2-1 検査証明書データの集計結果

種別			
		最大値	248
C10T		最小値	217
5101	(KN)	平均值	231.6
	標準偏差A	5.26	
		最大値	244
S10TW	ホルト軸刀	最小値	220
5101W	(KN)	平均值	231.2
	標準偏差A	(kN)	4.92

表 3-2-1 検査証明書データの集計結果

3-2-2 立会い試験

図 3-2-2 には, 立会い試験の試験結果を頻度分布等で示し, 表 3-2-2 はこれらの試験結果の集計値 を示した.

立会い試験時でのボルト長(図 3-2-2(a))は、図 3-2-1(a)と比較すると短いもので行われているケ ースが多いことがわかる.図 3-2-2(b)の個々のボルト軸力は、S10T(W)で 220~235kN の頻度が高く、 その平均は S10T で 230.2kN、S10TW で 230.0kN と目標通りの軸力が導入されていたが、検査証明書 よりそれぞれ 1.4kN、1.2kN小さい結果であった.試験結果の判定に用いる5本の平均値(図 3-2-2(c)) においても、当然図 3-2-2(b)と同じ値であった.検査証明書と大きな違いがない理由として、ボルト 製造会社の試験場における室内温度は一定下に管理されていること(JIS 規定は 23±5℃で立会い試験 データの平均値は S10T で 21.8℃、S10TW で 20.9℃)、また、製造からの期間が短いことなどが考え られる.ただし、S10TW の標準偏差は 24%程度大きくなっており、これは立会い試験データ数が極端 に少ないことが原因と考えられる.締付け軸力 226kN に対しては S10T で 83%、S10TW で 74%の試験 データがこれを上回り、測定結果の最小値は S10T(W)で 219kN と、規定の下限値に対して 7kN 大きく なる結果であった.最大値は S10T で 245kN と規定の上限値より 4kN、S10TW で 244kN と 5kN 小さ い値であった.図 3-2-2(d)には、ボルト長と軸力の関係を示すが、検査証明書の結果と同様、回帰直 線は右肩上がりであるが、その相関係数は S10T で 0.072、S10TW で 0.206 と低く、ここでもボルト長 と軸力の明確な相関は認められなかった.

図 3-2-3(a)は1データ5本の最大軸力と最小軸力の軸力差を示したものであるが,試験温度が安定 していても最大で 50kN の差があり,平均では S10T(W)で約 15kN の違いが生じていた.次に,図 3-2-3(b)は検査証明書で示されている軸力と試験時での軸力差を示したものであるが,そのほとんど が0をピークとした±3kN の範囲内に S10T で 61%, S10TW で 50%のデータがあり,平均値は S10T で -0.5kN, S10TW で-2.1kN と小さく,検査証明書で示されている軸力は信頼性の高い値であると判断で きる.ただし,約 22kN の違いが生じる場合も見られた.

図3-2-4(a)は1データ5本の標準偏差の頻度分布を示すが,最大値は17.8kNと規定の上限値(11.5kN) を超える場合もあり,平均はS10T で 5.3kN,S10TW で 5.5kN と規定の上限値の 1/2 弱であった.図 3-2-4(b)は変動係数の頻度分布を示すが,規定の上限値(5.0%)に対し最大値は 7.6%,平均値は S10T で 2.3%,S10TW で 2.4%であった.なお,高力ボルト製造工場での品質管理は X-R 管理図^{1)~3)}で行っ ているので,ロット単体での標準偏差は参考値である.

(c)5本のボルト軸力平均値の頻度分布 (d)軸力とボルト長の関係 図 3-2-2 立会い試験データの集計結果(各頻度分布,ボルト長との関係) I

項目	種別	最小值	最大値	平均值	標準偏差A
個々のボルト軸力(kN)	S10T	206	260	230.2	7.33
	S10TW	202	251	230.0	8.60
5本のボルト軸力平均値(kN)	S10T	219	245	230.2	4.68
	S10TW	219	244	230.0	6.09
最大と最小の軸力差(kN)	S10T	4	50	14.6	5.74
	S10TW	5	38	15.2	7.22
検査証明書との軸力差(kN)	S10T	-14.6	21.8	-0.5	4.40
	S10TW	-14.2	13.8	-2.1	4.66
標準偏差(kN)	S10T	1.36	17.79	5.26	
	S10TW	1.94	14.03	5.54	
変動係数(%)	S10T	0.60	7.55	2.29	
	S10TW	0.85	6.26	2.41	

表 3-2-2 立会い試験データの集計結果

図 3-2-3 立会い試験データの集計結果(各頻度分布)Ⅱ

3-2-3 現場試験

(1) 現場試験の頻度分布と立会い試験との比較

図 3-2-5~10 には,現場試験の試験結果を頻度分布で示し,表 3-2-3 はこれらの調査結果の集計値 を示した.現場試験のデータ総数量については,表 3-1-2 で示したように S10T で 773 データである が,その内訳は,常温時 516,低温時 195,高温時 62 データである.S10TW のデータ総数量は 259 デ ータであるが,その内訳は,常温時で 198,低温時で 39,高温時で 22 データであり,常温時のデータ と比較して常温時以外のデータが少ないことに留意が必要である.なお,S10T(W)の現場試験では, 基本的に長さ 80mm のボルトを用い確認試験を行っているので,ボルト長の影響はないデータである.

図 3-2-5 は個々のボルト軸力の頻度分布を示す. S10T については、常温時は 224~231kN,低温時では 216~219kN の頻度が高いなだらかな凸型で、高温時はピークがなく全体的に広がっている凸型の分布であった. S10TW については、常温時は 224kN,232kN にピークがあるばらつきのある分布であった.低温時と高温時は目立ったピークがなく全体的に広がっている凸型の分布であった.常温時,低温時および高温時の軸力の平均値は、それぞれ S10T で 228.4kN,220.3kN および 235.9kN,S10TW で 229.9kN,216.4kN および 238.6kN であり、どちらも高温時>常温時>低温時となった.特に低温時と高温時では S10T で 15.6kN,S10TW で 22.2kN の違いが生じていた.また,標準偏差 A は、S10T で高温時>常温時>低温時となっているが、常温時と低温時では大きな違いはなく、若干であるが常温時が大きかった.一方で、S10TW は常温時>低温時>低温時では大きな違いはなく、若干であるが常温時が大きかった.一方で、S10TW は常温時>低温時>低温時であった.この温度との関係については、(2)で詳細に述べる.次に、立会い試験データ(図 3-2-2(b))と比較すると、S10Tの常温時であれば 1.8kN の違いが生じているだけであり、また、標準偏差 A の違いも小さく、架設現場においても 3-2-2 で示した室内試験である立会い試験との大きな違いは見られなかった.S10TW については、平均値で 0.1kN の違いを生じているだけであるが、頻度分布は、立会い試験が凸型であるのに対し、現場試験

ではばらつきが生じていた.

図 3-2-6 は 5 本の平均値の頻度分布を示す. S10T の常温時および S10T(W)の高温時において、規定 の上限値となるデータは見られなかったが、S10TW の常温時において規定の上限値および下限値付近 のデータが見られ、ピークも 222kN、234kN、238kN とばらつきのある分布であった. 最小値は S10T の常温時、S10T(W)の低温時および S10TW の高温時において、規定の下限値を下回るものはないもの のその付近のデータがある. なお、S10T(W)において規定の下限値は常温時と非常温時で 5kN の差が あるが、S10T の現場試験データでの常温時と低温時の最小値の差は 5kN であり、規定値の差と一致 した.締付け軸力 226kN に対しては、常温時で S10T が 65%、S10TW が 69%、高温時では S10T が 89%、 S10TW が 100%これを上回るが、低温時では S10T で 17%、S10TW で 5%の試験データのみ締付け軸 力を上回るに止まった. S10T の常温時の頻度分布はなだらかな凸型であり、立会い試験データ(図 3-2-2(c)) とは異なり、分布幅が広く標準偏差 A も立会い試験より大きかった. S10TW も個々のボ ルトの軸力と同様にばらつきのある分布であり、立会い試験データ(図 3-2-2(c))のようななだらか な凸型ではなかった.

図 3-2-7 は、5 本中の最大と最小の軸力差の頻度分布を示す. S10T は、平均値では常温時で 11.0kN, 低温時で 10.0kN,高温時で 11.3kN の軸力差が生じ、有意な差とは言えないが高温時>常温時>低温 時となった.また、常温時において、立会い試験データ(図 3-2-3(a))より軸力差は 3.6kN 小さかっ た.S10TW は、平均値では常温時で 12.9kN,低温時で 10.0kN,高温時で 8.5kN の軸力差が生じ、常 温時>低温時>高温時となった.また、常温時において、立会い試験データ(図 3-2-3(a))より軸力 差は 2.3kN 小さかった.

図 3-2-8 は検査証明書との軸力差の頻度分布を示す. S10T(W)の常温時では-4~-6kN をピークとす るなだらかな凸型の分布であり, S10T の高温時ではデータにばらつきが生じていた. 軸力差の平均値 は,常温時で S10T が-3.7kN, S10TW が-4.5kN,低温時で S10T が-7.8kN, S10TW が-15.1kN,高温時 で S10T が 0.4kN, S10TW が 2.2kN と温度が低くなれば検査証明書との差が大きくなる結果となった. 立会い試験データ(図 3-2-3(b))と比較すると,常温時では分布が大きく異なっており,ばらつきが 大きく(標準偏差 A も大きい),平均値で S10T は 3.2kN, S10TW は 2.4kN の違いが生じていた.

図 3-2-9 は標準偏差の頻度分布を示すが, S10T(W)で 2.0kN~, 3.5kN~および 6.5kN 以上にピーク があるばらつきのある分布であった.S10T の平均値は常温時で 4.0kN, 低温時で 3.7kN, 高温時で 4.1kN と規定の上限値(11.5kN)の 1/2 以下で,低温時の方が若干小さかった.一方 S10TW の平均値は常温 時で 4.7kN,低温時で 3.5kN,高温時で 3.1kN と常温時の方が小さかった.最大値は S10TW の常温時 および低温時で規定の上限値を上回った.

図 3-2-10 は変動係数の頻度分布を示すが, S10T(W)の常温時および S10T の低温時で 1.50%~にピークがあるが, 凸型の分布でもなく, 標準偏差と同様, ばらつきが生じていた. S10T の平均値は常温時および低温時で 1.7%, 高温時で 1.8%であり, 最大値はそれぞれ, 5.3%, 4.3%, 3.9%であった. S10TW の平均値は常温時で 2.0%, 低温時で 1.6%, 高温時で 1.3%であり, 最大値はそれぞれ, 5.2%, 4.4%, 2.6%であった.

I -3-12
			S10	TC		S10TW				
項目		最小値	最大値	平均值	標準 偏差A	最小値	最大値	平均值	標準 偏差A	
	常温時	200	258	228.4	7.49	208	248	229.9	8.61	
個々のボルト	低温時	200	246	220.3	6.99	204	245	216.4	7.19	
軸力(kN)	高温時	217	260	235.9	8.62	223	248	238.6	4.54	
	全データ	200	260	226.9	8.64	204	248	228.6	9.92	
	常温時	213	244	228.4	6.04	216	245	229.9	6.90	
5本のボルト軸力	低温時	208	235	220.3	5.69	209	234	216.4	5.94	
平均值(kN)	高温時	222	249	235.9	7.44	232	243	238.6	3.13	
	全データ	208	249	226.9	7.47	209	245	228.6	8.65	
	常温時	1	26	11.0	5.05	4	35	12.9	6.10	
最大と最小の	低温時	0	25	10.0	4.80	3	28	10.0	6.36	
軸力差(kN)	高温時	3	24	11.3	4.45	2	17	8.5	3.86	
	全データ	0	26	10.7	4.95	2	35	12.1	6.15	
	常温時	-23.2	14.4	-3.7	5.79	-22.6	10.6	-4.5	6.23	
検査証明書との	低温時	-25.0	5.4	-7.8	5.68	-27.6	-5.8	-15.1	6.05	
軸力差(kN)	高温時	-15.6	19.2	0.4	8.74	-4.2	5.6	2.2	2.64	
	全データ	-25.0	19.2	-4.3	6.57	-27.6	10.6	-5.4	7.38	
	常温時	0.5	11.6	4.0		1.4	12.1	4.7		
	低温時	0.0	9.3	3.7		1.0	9.6	3.5		
標準偏差(kN)	高温時	1.3	8.9	4.1		0.8	6.0	3.1		
	全データ	0.0	11.6	3.9	—	0.8	12.1	4.4		
	常温時	0.2	5.3	1.7		0.6	5.2	2.0		
亦動 私物 (%)	低温時	0.0	4.3	1.7		0.5	4.4	1.6		
又助 成 \/0	高温時	0.6	3.9	1.8	—	0.3	2.6	1.3	—	
	全データ	0.0	5.3	1.7		0.3	5.2	1.9		

表 3-2-3 現場試験データの集計結果

(2) 現場試験各結果と温度との関係

図 3-2-11~13 には、現場試験各結果と温度との関係を示した. 図中には、最小二乗法を用いて求めた温度に対する各結果の回帰直線を示し、その直線式および相関係数も示した. いずれの結果においても、右肩上がりであるが、相関係数に違いが生じており、S10TWのボルト軸力の平均値に強い相関が認められ、S10T(W)の個々のボルト軸力、検査証明書との軸力差および S10T のボルト軸力の平均値に相関が認められた. S10TW の方が回帰直線の傾きが大きく、また、相関係数も大きかった.

図 3-2-11 (a) は個々のボルト軸力と温度の関係を示すが、相関係数は大きく S10T で 0.5、S10TW で 0.6 を超え、相関有りと判断できる.ボルト締付けにおいて温度依存性が生じるのは、ボルトに塗布 されている潤滑剤の影響である.この潤滑剤は、トルク法でボルト締付けを行う上で軸力の安定を図 るために欠かせないものであるが、この潤滑剤に温度依存性がある.このため、温度が高くなればボルト軸力も大きくなったものと考えられる.3-2-2 の立会い試験時での平均温度は S10T で 21.8℃、S10TW で 20.9℃であり、これを試験標準温度とすれば、この温度における各回帰直線での推定値はそれぞれ 229.0kN、230.0kN となる.S10T では立会い試験データ(230.2kN)と 1.2kN の違いで、S10TW で は立会い試験データ(230.0kN)と一致して、この平均温度で判断すれば比較的精度よく推測できる回帰 直線式であると考えられる.同様に、その他の関係についても、平均温度における回帰直線から得られた推定値を表 3-2-4 に示す.ここでは、表 3-2-2 で示した立会い試験データの平均値およびこれと

推定値との差も示した.相関係数が大きい結果では,推定値と立会い試験値は近い値を示した.

これらの結果から判断すると、立会い試験データより現場試験データでは、頻度分布の範囲が広く、 標準偏差 A が大きかった(ばらつきが大きい)のは、試験時の温度による影響が主要因であり、架設 現場での設備環境や使用機具による影響は少ないと考えられる. なお、相関係数が小さかった最大と 最小の軸力差、標準偏差および変動係数について、回帰直線の傾きは小さく、1 つの確認試験におけ る軸力のばらつきは、温度の影響は少ないと考えられる.

I -3-14

図 3-2-13 現場試験データ各結果と温度との関係Ⅲ

項目	種別	回帰直線 推定値(1)	立会い試験 平均値(2)	(1) - (2)
(田々のゴルト動力(LN)	S10T	229.0	230.2	-1.2
	S10TW	230.0	230.0	0.0
「木のギルト軸力亚均位(1-11)	S10T	229.0	230.2	-1.2
5年のホルド軸刀平均値(KN)	S10TW	230.0	230.0	0.0
見+とり見しの動力ギ(LN)	S10T	10.8	14.6	-3.8
取入と取小り軸刀左(KN)	S10TW	12.2	15.2	-3.0
炒木訂明ましの動力羊(1-N)	S10T	-3.2	-0.5	-2.7
便宜証明書との軸刀左(KN)	S10TW	-4.3	-2.1	-2.2
/== 淮/□ 关 (1-N)	S10T	4.0	5.3	-1.3
悰凖備左(KN)	S10TW	4.5	5.5	-1.0
亦動	S10T	1.8	2.3	-0.5
変動術数(%)	S10TW	1.9	2.4	-0.5

表 3-2-4 回帰直線推定値と立会い試験結果との比較

3-3 トルク係数値の調査結果

3-3-1 検査証明書

図 3-3-1, 2 には、検査証明書で調査したボルトのボルト長およびトルク係数値を頻度分布で示し、 図 3-3-3 は、ボルト長とトルク係数値の関係を示した.また、表 3-3-1 にはこれらの調査結果の集計 値を示した.ここで示す標準偏差は、表 3-1-4 で示した標準偏差(3 本での統計処理結果)と区別す るため、標準偏差 A と称し、調査したトルク係数値の統計処理結果を示した.なお、集計できた検査 証明書は 3 社のボルト製造会社のものである.

図 3-3-1 に示すように、調査したボルト長は、F10T(W)は 80mm をピークに、F10TW でその前後の ものが多く、F10T では一様に分布しており、最大で 205mm、最小で 55mm であった.F8T について は、ボルト径により傾向が異なり、M16 および M20 は 50~60mm、M22 は 80mm をピークに比較的小 さいものが多く、M24 は 85mm、100mm をピークに 75~175mm の範囲で一様に分布していた.図 3-3-2 に示すトルク係数値は、F10T(W)は 0.132~の頻度が高く、平均値は F10T で 0.1307、F10TW で 0.1305 であり、表 3-1-4 で示す規定値(0.110~0.150)のほぼ中間値にあった.最小値は 0.116 と規定の下限値 より 0.006 大きく、最大値は 0.142 と規定の上限値より 0.008 小さかった.F8T については、M20、M22 および M24 は 0.128~の頻度が高く、M16 は 0.124~の頻度が高かった.平均値は 0.1259~0.1285 で あり、表 3-1-4 で示す規定値(0.110~0.150)のほぼ中間値にあった.最小値は 0.115 と規定の下限値よ り 0.005 大きく、最大値は 0.143 と規定の上限値より 0.007 小さかった.なお、ボルト径の差異による トルク係数値に明確な違いは認められなかった.

ボルト長の影響を確認するため,図 3-3-3 には,ボルト長と軸力の関係を示す.回帰直線は右肩下 がりであるが,相関係数は F10T(W)で 0.1 を下回っており,F8T については,回帰直線はボルト径に より異なり,M20 で 0.4 を上回るものの,M16 では 0.1 を下回っており,ボルト長と軸力の明確な相 関は認められなかった.

図 3-3-1 検査証明書データの集計結果 I (ボルト長)

図 3-3-3 検査証明書データの集計結果皿(ボルト長とトルク係数値の関係)

	귀가 !		項	目				
種別	ホルト	トル	トルク係数値(kN)					
	侄	最大値	最小値	平均值	偏差A			
F10T	M22	0.141	0.116	0.1307	0.0044			
F10TW	M22	0.142	0.117	0.1305	0.0044			
	M16	0.143	0.116	0.1265	0.0047			
БОТ	M20	0.142	0.119	0.1285	0.0047			
гог	M22	0.142	0.115	0.1259	0.0058			
	M24	0.135	0.119	0.1280	0.0030			

表 3-3-1 検査証明書データの集計結果

3-3-2 立会い試験

図 3-3-4 には、立会い試験の試験結果を頻度分布等で示し、表 3-3-2 はこれらの試験結果の集計値 を示した.

立会い試験時でのボルト長(図 3-3-4(a))は、検査証明書(図 3-3-1)と比較すると短いもので行われているケースが多いことがわかる.図 3-3-4(b)の個々のトルク係数値は、F10Tでは0.128~0.135の頻度が高く、ピークがない台形型の分布であり、その平均は0.1293と検査証明書より0.014低い結果であった.一方、F10TWでは0.126~0.137の頻度が高く、平均値をピークとする分布でありF10Tとは異なっていた.なお、平均値は検査証明書の結果と違いはなかった.試験結果の判定に用いる3本の平均値(図 3-3-4(c))においても、平均値は当然図 3-3-4(b)と同じであった.なお、検査証明書と大きな違いがない理由として、ボルト製造会社の試験場における室内温度は一定下に管理されていること(JIS規定は23±5℃で立会い試験データの平均値はF10Tで21.5℃、F10TWで20.8℃)、また、製造からの期間が短いことなどが考えられる.ただし、頻度分布は検査証明書とは異なっており、F10T(W)ともに壺型の分布で、平均値より大きい位置にトルク係数値のピークが生じる分布であった.図 3-3-4(d)には、ボルト長と軸力の関係を示すが、回帰直線はF10Tでは右肩上がり、F10TWでは右肩下がり、その相関係数は小さく、ボルト長とトルク係数値の明確な相関は認められなかった.

図 3-3-4(e)は検査証明書で示されているトルク係数値と立会い試験時でのトルク係数値の差を示 したものであるが,試験温度が安定していても最大で 0.016 の差が生じる場合もあった.頻度分布は -0.001~0.001 に集中しており,また,F10T(W)の平均値が-0.0005 であり,検査証明書との差はほとん どないと判断でき,検査証明書で示されているトルク係数値は信頼性の高い値であると考えられる.

図 3-3-4(f)は1 データ3本の標準偏差の頻度分布を示すが,最大値は0.0089と規定の上限値(0.010) に対し近い場合もあり,平均はF10T で0.0039,F10TW で0.0043と規定の上限値の約4割であった. なお,高力ボルト製造工場での品質管理はX-R 管理図⁴⁾で行っているので,ロット単体での標準偏差 は参考値である.

表 3-3-2 立会い試験データの集計結果

項目	種別	最小值	最大値	平均值	標準偏差A
田々のトルク核粉値	F10T	0.104	0.139	0.1293	0.0054
個々のトルク係数値	F10TW	0.117	0.143	0.1311	0.0035
「木のトルク核粉値亚均値	F10T	0.110	0.136	0.1293	0.0062
3年の下ルク保留値半均値	F10TW	0.121	0.137	0.1311	0.0048
松本 江田書 しの羊	F10T	-0.0097	0.0060	-0.0005	0.0033
検査証明書との <u>定</u>	F10TW	-0.0160	0.0077	-0.0005	0.0032
播 滩信辛	F10T	0.0012	0.0089	0.0039	
惊퍅偏左	F10TW	0.0006	0.0065	0.0043	

3-3-3 現場試験

(1) 現場試験の頻度分布

図 3-3-5 には、現場試験の試験結果を頻度分布で示し、表 3-3-3 はこれらの調査結果の集計値を示した.ここでは、予備試験で得られたトルク係数値と標準偏差および設定トルクを示した.ここで示す設定トルクとは、予備試験で得られたトルク係数値から 3-1-2 の式 (3-1-1) を用いて求めたその日の締付けトルクである.なお、現場試験では、基本的に長さ 80mm のボルトを用い確認試験を行っているので、ボルト長の影響はないデータである.

図 3-3-5(a)は個々のトルク係数値の頻度分布を示したものであるが,F10T では 0.126~0.137 の範囲に分布が集中し,その範囲では同程度の頻度であり,ピークがない台形型の分布であった.一方, F10TW では平均値をピークとする凸型の分布であった.また,F10T(W)で標準偏差 A の大きな違いはなかった.

図 3-3-5(b)は5本の平均値の頻度分布を示す.規定の下限値となるデータは見られなかったが,規定の上限値となる場合は見られた.F10T(W)で,平均値(図 3-3-5(b))と個々の結果(図 3-3-5(a))の分布は若干異なるものの大きな違いではなかった.また,標準偏差Aについては,室内試験である立合い試験データと比較しても,現場試験の方が大きくなるものの差異は小さく,現場という理由でばらつきが大きくなるものではないと判断できる.

図3-3-5(c)は標準偏差の頻度分布を示すが、F10Tは0.0015をピークとする釣り鐘型の分布であり、 F10TWは0.0030をピークとする尖った凸型の分布を示し、F10TとF10TWで大きな違いが見られた. また、平均値においても、F10Tで0.0027、F10TWでは0.0043と約1.6倍、F10TWの方が大きかった. さらに、F10T(W)で規定の上限値に近い場合もわずかではあるが見られた.

図 3-3-5(d)は、3-1-2 で示した手順で求めた設定トルクを集計した結果の頻度分布である. F10T では 630N・m~と 720N・m~をピークとする 2 つの凸を有する緩やかな凸型の分布であり、F10TW では 630N・m~をピークとする釣り鐘型の分布を示し、F10T と F10TW で大きな違いが見られた. なお、 平均値においては、F10T は 652N・m、F10TW は 644N・m と大きな違いではなかった.

(a) 個々のトルク係数値 (b) 5 本のトルク係数値平均値 図 3-3-5 現場試験データの頻度分布(トルク係数値,標準偏差,設定トルク)

項目	種別	最小值	最大値	平均值	標準偏差A
伊ゃのトルク係粉店	F10T	0.108	0.154	0.1330	0.0080
	F10TW	0.112	0.153	0.1308	0.0065
「木のトルカ係粉値亚物値	F10T	0.112	0.150	0.1330	0.0076
本の下ルク係数値平均値	F10TW	0.117	0.150	0.1308	0.0052
擂潍信关	F10T	0.0004	0.0086	0.0027	
惊퍅俪左	F10TW	0.0004	0.0099	0.0041	
	F10T	562	747	651.9	38. 584
設止トルク (N・m)	F10TW	607	744	644.4	21.964

表 3-3-3 現場試験データの集計結果

(2) トルク係数値および設定トルクと温度との関係

図 3-3-6 には、トルク係数値および設定トルクと温度との関係を示した. 図中には、最小二乗法を 用いて求めた温度に対する各結果の回帰直線を示し、その直線式および相関係数も示した. F10T(W) で、いずれの結果においても、右肩上がりであったが、F10T はトルク係数値および設定トルクともに 相関係数は 0.2 に達しておらず、明確に相関有りと判断するのは困難である. ただし、F10TW のトル ク係数値は 0.199 とほぼ 0.2 であり、設定トルクは 0.329 であり、弱い相関はあると判断できる.

図 3-3-6(a) はトルク係数値と温度の関係を示すが、F10T では回帰直線の傾きは小さく、また相関 係数は小さかった.一方、F10TW では弱い相関は認められた.すなわち、温度が高い場合には大きい トルク係数値となる傾向であることを示している.一方、図 3-3-6(b) は設定したトルクと温度の関係 を示すが、F10T(W)で右肩上がりであり、温度が高い場合には大きいトルクでボルトを締め付けてい ることを示している.

図 3-2-11 で示したように S10T(W)においても温度依存性があり、温度が高くなればボルト軸力も

大きくなる傾向にある.さらに、回帰直線の傾きは大きく、また、相関係数も大きく、これと本試験 結果である F10T(W)を比較しても、F10T(W)の方が温度依存性は低いと判断できる.温度依存性が生 じるのは、3-2-3(2)に示したとおりであるが、F10T(W)では、締付け日の温度からトルク係数値を算 出し、その日のトルクを設定しているので、導入軸力には温度の影響は生じないと考えられる.

3-4 機械的性質の調査結果

すべての機械的性質の調査結果を表 3-4-1 に示し,各調査項目における規定値比率を図 3-4-1 に示した.ここで示す規定値比率とは,調査結果(表 3-4-1)を規定の下限値(表 3-1-1)で除して求めた比率を示しており,その範囲は最小値と最大値に対する比率である.また,平均値に対する比率も示している.

		耐力	引張	伸び	絞り	引張	硬	さ(HRC)		溶融亜釒	谷めっき 2 mar	付着量	
			(N/mm^2)	5虫 C (N/mm ²)	(%)	(%)	何里 (kN)	ボルト	+ L	应令	(g/i ボルト	n",HDZ5	5) 应令
		最小值	987	1038	16	60	312	31	24	<u>)</u> 坐亚 38	-	<u> </u>	产金
)T		最大值	1081	1144	23	74	348	36	30	42	_	-	-
S1(平均值	1037.1	1083.2	19.1	68.2	328.4	33.3	27.1	40.1	_	-	_
		標準偏差A	14.99	15.04	0.99	2.01	5.47	1.06	0.98	0.67	-	-	-
		最小值	998	1055	16	60	317	32	24	39	_	-	-
SIOTW		最大値	1093	1154	22	71	354	37	29	43	-	-	-
		平均值	1042.7	1097.6	18.9	65.5	333.9	34.3	26.6	40.1	-	-	-
	2	標準偏差A	19.18	19.60	1.03	2.26	6.93	0.98	1.24	0.94	-	-	-
	M2	最小値	982	1032	17	60	313	31	24	38	-	-	-
ΟT		最大値	1072	1119	22	73	342	36	29	42	-	-	-
ΕI		平均值	1038.1	1083.6	18.9	68.2	327.4	33.1	27.2	40.1	-	-	-
		標準偏差A	14.54	12.86	0.89	1.75	4.21	0.84	0.91	0.68	-	-	—
		最小値	1000	1059	17	60	317	31	23	39	-	-	—
ΛLC		最大値	1071	1135	21	71	348	36	28	42	-	-	-
F1(平均值	1033.4	1086.3	18.2	65.9	328.5	33.5	27.0	40.0	-	-	-
		標準偏差A	13.34	11.41	0.85	2.33	5.00	1.04	0.94	0.46	-	-	-
		最小値	809	856	21	70	133	25	26	28	563	562	558
	16	最大値	882	921	24	75	145	28	28	34	747	714	662
	Μ	平均值	841.1	884.8	22.2	72.2	137.8	26.3	26.8	31.3	614.7	611.9	601.7
		標準偏差A	19.70	15.25	0.62	1.15	2.74	0.87	0.65	1.31	39.20	41.88	26.57
		<u>最小值</u>	806	856	21	70	208	25	25	30	564	567	578
	20	最大值	881	918	24	74	226	28	29	33	686	698	657
	Μ	平均值	841.8	886.5	22.3	72.3	215.8	26.8	27.0	31.7	602.7	597.3	596.4
8T		標準偏差A	18.81	14.18	0.81	0.98	5.10	0.55	1.07	0.94	32.49	30.77	23.46
Щ		<u>最小值</u>	802	851	19	68	258	25	25	27	560	566	558
	22	<u>最大值</u>	888	934	25	75	281	28	29	40	807	741	758
	Μ		839.9	885.3	22.1	72.4	266.8	26.7	27.0	32.7	610.0	626.7	615.2
		標準偏差A	17.71	15.12	0.83	1.01	5.79	0.74	0.81	2.40	39.01	42.77	34.44
		<u>最小</u> 值	789	846	19	69	295	24	24	29	557	573	574
	124	<u>最大</u> 值	882	919	24	74	329	28	28	40	785	749	652
	Μ	半均值	831.0	879.0	22.4	72.2	308.0	26.9	26.6	32.3	608.6	603.3	592.2
		標準偏差A	22.95	18.10	1.10	1.17	8.45	0.75	0.85	2.17	44.13	34.02	18.69

表 3-4-1 機械的性質の集計結果

図 3-4-1 規定の下限値に対する比率の範囲

(c)F8T 図 3-4-1 規定の下限値に対する比率の範囲

3-4-1 耐力(0.2%耐力)

図 3-4-2~4 には、耐力の調査結果を頻度分布およびボルト長との関係で示した.

図 3-4-2 は S10T(W)の関係を示すが、耐力の最小値は S10T で 987N/mm², S10TW で 998N/mm² であ り、規定値(900N/mm²)よりそれぞれ 87N/mm², 98N/mm² 大きく、さらに、平均値は 1037.1N/mm², 1042.7N/mm² と 137.1N/mm² (規定値比率:115%), 142.7N/mm² (規定値比率:116%) 大きかった.頻 度分布(図 3-4-2(a))は、S10T は 1020~1049N/mm²の分布が多く、ピークがない台形型に分布して いた.S10TW は、1035N/mm²~をピークとする凸型であるが、比較的耐力の大きい 1075N/mm²~に小 さなピークが見られた.また、ボルト長との相関(図 3-4-2(b))は明確には見られなかった.

表3-4-1に示すようにS10T(W)で比較すると標準偏差はS10TWが19.18,S10Tが14.99でありS10TW のばらつきが大きいことがわかる.これは3-4-2も同様の傾向である.工場製造時には,軸力を規定 値内に管理するためピンテールが破断する部位の断面積と潤滑油で調整を行うが,素材のばらつきが 大きいS10TWにおいて,表3-2-1および表3-2-2に示した軸力の平均値が目標通りであることから 信頼性の高い生産管理が実施されていることが確認できる.

図 3-4-3 は F10T(W)の関係を示すが、耐力の最小値は F10T で 982N/mm², F10TW で 1000N/mm²で あり、規定値(900N/mm²)よりそれぞれ 82N/mm², 100N/mm²大きかった.平均値では、逆に F10T の方 が 5.3N/mm²大きく、F10T で 1038.1N/mm², F10TW で 1033.4N/mm² であり、規定値比率はそれぞれ 115.3%、114.8% と 0.5%の違いであった.頻度分布(図 3-4-3(a))は、1020~1059N/mm²の分布が多く、ピークがない台形型に分布していた.また、ボルト長との相関(図 3-4-3(b))は明確には見られ なかった.

図 3-4-4 は F8T の関係を示すが、耐力の最小値は M16 で 809N/mm², M20 で 806N/mm², M22 で 802N/mm², M24 で 789N/mm² であり、規定値(640N/mm²)よりそれぞれ 169N/mm², 166N/mm², 162N/mm², 149N/mm² 大きかった. 平均値でも、M24 が 10N/mm² ほど小さく、M16 で 841.1N/mm², M20 で 841.8N/mm², M22 で 839.9N/mm², M24 で 831.0N/mm² であり、規定値比率はそれぞれ 131%、132%、 131%、130% と 2%の違いであった. 頻度分布(図 3-4-4(a))は、825~849N/mm²の分布が多く、850N/mm² を境に大小 2 つのピークをもつ凸型の分布であった. また、ボルト長との相関(図 3-4-4(b))は明確 には見られなかった.

図 3-4-2 S10T(W)の耐力(0.2%耐力)の調査結果

3-4-2 引張強さ(引張強度)

図 3-4-5 には、引張強さの調査結果を頻度分布、ボルト長との関係および耐力との関係で示した. 図 3-4-5(a),(b),(c)は S10T(W)の関係を示すが、引張強さの最小値は S10T で 1038N/mm², S10TW で 1055N/mm²であり、規定値(1000N/mm²)に対しそれぞれ 38N/mm², 55N/mm²大きく、平均値では S10T で 1083.2N/mm², S10TW で 1097.6N/mm²と、規定値(1000N/mm²)に対しそれぞれ 83.2N/mm²(規定値比 率: 108%)、97.6N/mm²(規定値比率: 110%)大きかった、頻度分布(図 3-4-5(a))は、S10T が平均 値近傍をピークとするなだらかな凸型の分布であり、耐力の分布とは若干異なった.ただし、標準偏差Aは、耐力とほぼ一致していた.S10TWは、1090N/mm²~をピークとする凸型の分布であるが、耐力と同様に比較的引張強さの大きい1135N/mm²~に小さなピークが見られた.ボルト長との関係(図 3-4-5(b))については、耐力と同様、まったく相関は見られなかった.なお、耐力との関係(図 3-4-5(c))については、相関係数が S10T で 0.867、S10TW で 0.944 と強い相関が認められた.

図 3-4-5(d),(e),(f)はF10T(W)の関係を示すが,引張強さの最小値はF10Tで1032N/mm²,F10TWで1059N/mm²であり,規定値(1000N/mm²)よりそれぞれ32N/mm²,59N/mm²大きかった.平均値では,大きな違いはなく,F10Tで1083.6N/mm²,F10TWで1086.3N/mm²であり,規定値比率はそれぞれ108%,109%と耐力の比率より若干小さかった.なお,耐力と引張強さの規定の下限値の差は100N/mm²であるが,調査データの平均値で耐力と引張強さの差は約50N/mm²の違いであった.次に,頻度分布(図 3-4-5(d))は,平均値近傍をピークとするなだらかな凸型の分布であるが,F10(W)で耐力の分布とは若干異なった.また,標準偏差Aも,耐力より若干小さかったが大きな違いではなかった.ボルト長との関係(図 3-4-5(e))については,右肩上がりであるが,相関係数は小さく,耐力と同様,明確な相関関係は認められなかった.耐力との関係(図 3-4-5(f))については,F10T(W)で相関係数は0.85を超え強い相関が認められた.また,耐力はF10T>F10TW,引張強さではF10TW>F10Tであったこともあり,F10T(W)の回帰直線に違いが生じていた.ただし,回帰直線の傾きに大きな違いは見られなかった.

図 3-4-5(g), (h), (i)は F8T の関係を示すが, 引張強さの最小値は M16 と M20 で 856N/mm², M22 で 851N/mm², M24 で 846N/mm² であり, 規定値(800N/mm²)よりそれぞれ 56N/mm², 51N/mm², 46N/mm² 大きかった. 平均値では, ボルト径による大きな違いはなく, M16 で 884.8N/mm², M20 で 886.5N/mm², M22 で 885.3N/mm², M24 で 879.0N/mm² であり, 規定値比率は M16,M20,M22 で 111%, M24 で 110% と耐力の比率より小さかった. なお, 耐力と引張強さの規定の下限値の差は 160N/mm² であるが, 調 査データの平均値はいずれも耐力と引張強さの差は約 50N/mm²の違いであった. 次に, 頻度分布(図 3-4-5(g))は, M22 はピークが突出しているものの, 全体的になだらかな凸型の分布であった. また, 標準偏差も, 耐力より若干小さかったが大きな違いではなかった. ボルト長との関係(図 3-4-5(h)) については, 相関係数は小さく, 耐力と同様, 相関は認められなかった. 耐力との関係(図 3-4-5(i)) については, いずれの径でも, 相関係数は 0.9 を超え強い相関が認められた. また, 耐力および引張 強さの径による差が小さかったこともあり, 回帰直線に大きな違いは見られなかった.

図 3-4-6 には降伏比(耐力/引張強さ)の算出結果を頻度分布で示した.S10Tの降伏比は0.930~0.976 の範囲にあり、その平均値は0.957 であった.ただし、分布のピークは0.950 と0.960 にあった.一方 S10TW の降伏比は0.927~0.969 の範囲にあり、その平均値は0.950 であった.頻度分布は、0.948 を ピークとする凸型の分布であった.F10T(W)は、ピークが複数ありばらつきのある分布であった.ま た、その平均値は、F10T で0.958、F10TW で0.951 であり、F10T の降伏比が高かった.F8T は、いず れも0.938~0.950 に集中し、0.956~に小さなピークがあった.また、その平均値は、M16、M20、M22、 M24 の順で0.951、0.950、0.949、0.945 であり、ボルト径の小さい順に降伏比が高かった.

I -3-29

3-4-3 伸び・絞り

図 3-4-7~9 に伸び・絞りの調査結果を頻度分布,ボルト長との関係および伸びと絞りの関係で示した.

図 3-4-7 は S10T(W)の関係を示すが, 頻度分布(図 3-4-7(a))は, 伸びについて, S10T で 16~23%, S10TW で 16~22%の狭い範囲であった. S10T は平均値をピークとする尖った凸型の分布であった. 一方, S10TW は 18%, 19%, 20%にピークが集中する分布であった. 絞りについては, S10T で 60~ 76%, S10TW で 60~71%の広い範囲であった. S10T は平均値近傍をピークとするなだらかな凸型の 分布であり, 伸びとは分布が異なった. S10TW は 63%, 67%の 2 つのピークをもつ分布であった. ま た, S10T(W)で標準偏差 A は伸びの約 2 倍であった. 平均値の規定値比率は, 伸びおよび絞りでそれ ぞれ S10T が 136%, 171%, S10TW が 135%, 164%であった. 特に, 絞りについては, S10T(W)で最 小値でも規定値の 150%の性能を有していた.

ボルト長との関係(図 3-4-7(b))については、伸びおよび絞りともに、回帰直線は右肩下がりであ るが、相関係数は S10T(W)で 0.119~0.168 であり、明確な相関は認められなかった.また、伸びと絞 りとの関係(図 3-4-7(c))については、相関係数は S10T で 0.546、S10TW で 0.685 であり、伸びが 増加すれば絞りも増加する相関が認められた.

図 3-4-8 は F10T(W)の関係を示すが、伸びの頻度分布(図 3-4-8(a))は、17~22%の狭い範囲で、 平均値は F10T で 18.9%、F10TW で 18.2%であり、平均値をピークとする尖った凸型の分布であった. また、平均値の規定値比率は、F10T および F10TW でそれぞれ 130%、135%であった.

絞りについては、60~73%と広い範囲で、平均値は F10T で 68.2%、F10TW で 65.9%であり、F10T では平均値をピークとするなだらかな凸型、F10TW ではピークがない台形型の分布であり、F10T(W) で分布が異なった.また、標準偏差 A は伸びの 2 倍を超えていた.平均値の規定値比率は、F10T および F10TW でそれぞれ 171%、164%であった.特に、絞りについては、最小値でも規定値の 150%の

性能を有していた.

ボルト長との関係(図 3-4-8(b)) については,伸びおよび絞りともに,回帰直線は,F10T では傾きはほぼゼロであるが,F10TW では右肩下がりであり,相関係数はF10T(W)で 0.2 を超え,弱い相関は認められた.また,伸びと絞りとの関係(図 3-4-8(c)) については,伸びが増加すれば絞りも増加する相関が認められ,相関係数はF10T で 0.493,F10TW で 0.373 であった.

図 3-4-9 は F8T の関係を示すが、伸びの頻度分布(図 3-4-9(a))は、19~25%の狭い範囲で、平均 値は 22.1~22.4%であり、平均値付近をピークとする尖った凸型の分布であった.また、平均値の規 定値比率は 140%であった.

絞りについては、68~75%の狭い範囲で、平均値は 72.2~72.4%であり、M16、M20 では平均値をピークとするなだらかな凸型、M22、M24 では尖った凸型の分布であり、径によって分布が異なった. 平均値の規定値比率は 160% であった.特に、絞りについては、最小値でも規定値の 151%の性能を有していた.

ボルト長との関係(図 3-4-9(b))については、回帰直線は、M20の絞りを除き傾きはほぼゼロであ るが、相関係数は 0.2 未満で、相関は認められなかった.また、伸びと絞りとの関係(図 3-4-9(c)) については、M16を除き伸びが増加すれば絞りも増加する相関が認められ、相関係数は M20 で 0.366、 M22 で 0.204、M24 で 0.700 であった.

図 3-4-7 S10T(W)の伸び・絞りの調査結果

3-4-4 引張荷重

図 3-4-10 に引張荷重の調査結果を頻度分布およびボルト長との関係で示した.

図 3-4-10(a), (b)は S10T(W)の関係を示すが, 引張荷重の最小値は S10T で 312kN, S10TW で 317kN, 平均値は S10T で 328.4kN, S10TW で 333.9kN と, 規定値(303kN)に対しそれぞれ S10T で 9kN, 25.4kN (規定値比率: 108%), S10TW で 14kN, 30.9kN(規定値比率: 110%)大きかった. この規定値比率 については, 3-4-2 で示した JIS Z 2241 の 4 号試験片で行った S10T(W)の引張強さの比率と一致した. また, 頻度分布(図 3-4-10(a))は S10T で 326kN, S10TW で 334kN 近傍をピークとする凸型の分布 であった. S10TW については, 比較的引張荷重の小さい 326kN~にも小さなピークが見られた. ボル ト長との関係(図 3-4-10(b))については, 回帰直線は右肩上がりであるが, 相関係数は S10T で 0.153, S10TW で 0.190と小さかった. なお, 図 3-4-5(b)で示した引張強さでは, まったく相関は見られなか ったが, ボルト製品で試験を行った引張荷重とは傾向が異なった. 表 3-4-1に示す S10T(W)の標準偏 差を比較すると, S10T は 5.47kN, S10TW は 6.93kN であり, S10TW のばらつきが大きい. これは,

JISZ2241の4号試験片で行った耐力および引張強さと同様の傾向である.

図 3-4-10 (c), (d) は F10T(W)の関係を示すが, 引張荷重の最小値は F10T で 313kN, F10TW で 317kN, 平均値はそれぞれ 327.4kN, 328.5kN と, 規定値(303kN)に対しそれぞれ 24.4kN, 25.5kN (規定値比率 はそれぞれ 108%, 109%) 大きかった. この規定値比率については, 3-4-2 で示した JIS Z 2241 の 4 号試験片で行った F10T(W)の引張強さの比率と一致した. また, 頻度分布 (図 3-4-10(c)) は F10T では 324~329kN の狭い範囲に分布しているのに対し, F10TW は 320~335kN の広い範囲に分布する 全く異なる凸型の分布であった. ボルト長との関係 (図 3-4-10(d)) については, 回帰直線は右肩上 がりであるが, 相関係数は F10T で 0.134, F10TW で 0.072 と小さかった. なお, 図 3-4-5(e) で示し た引張強さでも相関係数は小さいが, ボルト製品で試験を行った引張荷重と同様の右肩上がりの傾向 が示された.

図 3-4-10(e), (f)は F8T の関係を示すが,引張荷重の最小値は規定値に対し 7~15kN 大きく,平 均値は 11.8~25.0kN 大きかった(規定値比率では最小値が約 105%,平均値が約 110%). この規定値 比率については, 3-4-2 で示した JIS Z 2241 の 4 号試験片で行った F8T の引張強さの比率と概ね一致 した. また,頻度分布(図 3-4-10(e))は M16 と M22 は平均値近傍をピークとする尖った凸型に分 布しているのに対し, M20 はなだらかな凸型, M24 は凹型に分布する全く異なる分布であった. ボル ト長との関係(図 3-4-10(f))については,回帰直線は M16 を除き右肩上がりであるが,相関係数は いずれの径でも 0.2 未満と明確な相関は認められなかった.

3-4-5 硬さ

図 3-4-11~13 に硬さの調査結果を頻度分布および引張強さ・引張荷重とボルト硬さの関係で示した. なお、硬さの規定値は、ボルト、ナット、座金によって異なっている. これは、ボルトはボルトに要 求される引張強さで決まる材料特性での硬さを規定しているが、座金はボルトとナットがめり込まな い程度の硬さ、ナットはナット自身が滑らかに回転できる程度の硬さが要求されるので、硬さの規定 値は、座金>ボルト>ナットとなっている. ただし、F8T はめっき処理を行うため、500℃近いめっき 浴のなまし効果により実用上問題ない硬さで規定されている.

図 3-4-11 は S10T(W)の関係を示すが、ボルト、ナット、座金ともに分布の範囲(図 3-4-11(a))は 狭く、特に座金では 38~42HRC の範囲で標準偏差 A も S10T で 0.67HRC, S10TW で 0.94HRC と小さ かった. 各部位の平均値は、S10T がボルトで 33.3HRC、ナットで 27.1HRC、座金で 40.1HRC、S10TW がボルトで 34.3HRC、ナットで 26.6HRC、座金で 40.1HRC であり、規定値で示されているように座金 >ボルト>ナットとなっていた.

ボルト材料についても一般の鋼材と同様,硬さが大きくなれば,引張強さ(引張荷重も同様)が大きくなる関係にある.そこで,図3-4-11(b),(c)は,それぞれ引張強さおよび引張荷重との関係を示すが,どちらも回帰直線は右肩上がりで相関係数も0.4を超え,相関は認められた.図3-4-11(b)に示す回帰直線から推定(ナットおよび座金の硬さの平均値を代入)すると,ナットは1043N/mm²,座金は1128N/mm²程度の強度を有するものと推定できる.

図 3-4-12 は F10T(W)の関係を示すが、ボルト、ナット、座金ともに分布の範囲(図 3-4-12(a))は 狭く、特に座金では 38~42HRC の範囲で標準偏差 A も F10T で 0.68HRC、F10TW で 0.46HRC と小さ かった. 各部位の平均値は、F10T と F10TW で大きな違いはなく、ボルトで約 33HRC、ナットで約 27HRC、座金で約 40HRC であり、規定値で示されているように座金>ボルト>ナットとなっていた.

ボルト材料についても一般の鋼材と同様,硬さが大きくなれば,引張強さ(引張荷重も同様)が大 きくなる関係にある.そこで,図3-4-12(b),(c)は,それぞれ引張強さおよび引張荷重との関係を示 すが,どちらも回帰直線は右肩上がりで相関係数も一部を除けば0.4を超え,相関は認められた.図 3-4-12(b)に示す回帰直線から推定(ナットよび座金の硬さの平均値を代入)すると,ナットはF10T で1055N/mm²,F10TWで1047N/mm²,座金はF10Tで1133N/mm²,F10TWで1126N/mm²程度の強度 を有するものと推定できる.

図 3-4-13 は F8T の関係を示すが、ボルト、ナット、座金ともに分布の範囲は平均値近傍をピーク とする凸型の分布であった.各部位の平均値は、径による大きな違いはなく、ボルトおよびナットで 約 27HRC、座金で約 32HRC であり、規定値で示されているように座金>ボルト≒ナットとなってい た.

3-4-6 めっき膜厚

めっき膜厚の調査結果を図 3-4-14 に示す. 平均値は 590~630g/m²の範囲にあり,最小値は 557g/m² であり,規定値比率はそれぞれ 110%前後,101%であった.また,頻度分布は全ての径に共通して, 580g/m²にピークをもち,M16とM22に関しては 650~680g/m²にもピークをもつ分布であった.なお, ボルト,ナット,座金における付着量の違いはなく,ボルト径による違いも見られなかった.

図 3-4-14 めっき膜厚の調査結果

3-5 統計調査のまとめ

トルシア形高力ボルト S10T(W)の導入軸力,高力六角ボルト F10T(W)と溶融亜鉛めっき高力ボルト F8T のトルク係数値,およびこれらの機械的性質を把握することを目的とした調査の結果をまとめる と以下の通りである.

S10T(W)の導入軸力について、一定温度下で試験が行われている検査証明書および立会い試験の平均値は同等であった.また、温度が低くなればボルト軸力は小さくなる相関は認められ、その相関係数はS10Tで0.61、S10TWで0.74であった.なお、最大と最小の軸力差や標準偏差については、温度との相関は明確ではなく、同一試験における軸力のばらつきは温度の影響は低いと考えられる.

F10T(W)のトルク係数値について、一定温度下で試験が行われている検査証明書および立会い試験の平均値は同等であった.また、温度が低くなればトルク係数値や設定トルクは小さくなる弱い相関は認められた.ただし、高力六角ボルトについては、締付け日の温度条件でトルクを変えて行っているため、導入軸力には温度の影響はないと考えられる.

機械的性質について、今回調査した範囲ではすべて規定値を満たし、いずれの項目においても変動 係数が10%未満となっており、ばらつきの少ない材料であると考えられる.

参考文献

- 1) 日本道路協会:摩擦接合用トルシア形高力ボルト・六角ナット・平座金のセット・解説, 1983.10.
- 2) 鉄道総合技術研究所:摩擦接合用トルシア形高力ボルト・六角ナット・平座金のセット, 鋼鉄道橋規 格(SRS), 2010.8.
- 3) 日本鋼構造協会:構造用トルシア形高力ボルト・六角ナット・平座金のセット・解説, JSS II 09-2015, 2015.3.
- 4) 日本規格協会: JIS B 1186「摩擦接合用高力六角ボルト・六角ナット・平座金のセット」, 2013.
- 5) 日本道路協会:道路橋示方書·同解説-II 鋼橋編, 2012.3.
- 6) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説(鋼·合成構造物), 2009.7.
- 7) 日本建築学会:高力ボルト接合設計施工ガイドブック,2016.5.

4. 施工性の調査

鋼橋の架設現場において、高力ボルト摩擦接合継手に使用するボルトは、トルシア形高力ボルト(以下、トルシアボルト)、高力六角ボルト(以下、六角ボルト)および溶融亜鉛めっき高力ボルト(以下、めっきボルト)を使用する. 道路橋示方書¹⁾および鉄道構造物等設計標準²⁾では、これらのボルトの締付け基準が示され、トルク法(トルシアボルト、六角ボルト)での締付け軸力は、設計ボルト軸力の10%増し(M22では226kN)とし、ナット回転法(めっきボルト)での回転角は120±30°とすることが規定され、架設現場ではこれに従い、締付け作業を行っている.本章では、これらのボルトに関して、まず、架設現場で行われるボルト施工に関する実施作業を示す.そして、トルシアボルトと六角ボルトに関して、実際に行われる作業時間を実測し、両者の作業性の違いを示す.最後に、締付け作業の課題について示す.

4-1 調査方法

4-1-1 施工方法の違い

架設現場において実施されるボルト施工に関する一連の作業を図 4-1-1 に示す. ここでは, ボルト締付け作業だけでなく, 作業前に行われる予備試験あるいは作業後の締付け確認検査等も示している.

(a) トルシア形高カボルト (b)高力六角ボルト (c)溶融亜鉛めっき高カボルト

図 4-1-1 架設現場でのボルト施工の手順

(予備試験、ボルト締付け作業、検査、仕上げ作業)

(1) トルシア形高力ボルト

図4-1-1(a)はトルシアボルトの作業項目を示すが、まず、①の予備試験では、図 4-1-2に示す油圧式の軸力計にボルトを挿入し、これを用いて、日々、1製造ロット(5本)の導入軸力を確認し、5本の平均値が規定値(表4-1-1参照)を満足することを確認する.確認後は、予備試験確認シートに記録し、その後締付け作業に取り掛かる.

ボルト締付け作業として,まず,部材にボルトを挿入し,すべてのナットを手で締付ける(②)がこ れらは各ボルト共通項目である.③の予備締め(一次締め)は,導入軸力の60%を目標としてトルク制 御式インパクトレンチを用いて締付ける.その後,図 4-1-3に示すように,ナットにマーキング(④) を行う.⑤の本締めは,シャーレンチを用いて締付け,ピンテールが破断すれば締付け完了となる.図 4-1-4はその作業状況を示すが,最上段・最下段の行は,締付け前の状況(ピンテールあり)であり, その他のボルトは,締付け後の状況(ピンテールが破断)を示している.

目視による締付け検査として、⑥でピンテールの破断確認を行い、マーキングのずれを確認し、共回 りがないことを確認する.トルシアボルトでは六角ボルトのような⑦の締付け確認はないが、最後に、 ⑧の塗装直前でピンテール破断面を仕上げる必要がある.この場合、破断面はグラインダーで仕上げる か、あるいは図 4-1-5 に示すように専用機を用いて行う.

	常温時(10℃~30℃)	常温時以外(*)		
規定	ボルト軸力の 平均値	ボルト軸力の 平均値		
道路橋の規定 ³⁾	212~240	$207 \sim 261$		
鉄道橋の規定 ⁴⁾	212 249	2077~201		
建築鉄骨の規定 ⁵⁾	$212\sim\!256$	$205 \sim 268$		

表 4-1-1 トルシアボルト(M22)の軸力管理の規定値 (単位:kN)

(*):適用温度は、0~60℃(鉄道のみ0~50℃)

図 4-1-2 油圧式軸力計

図 4-1-3 マーキング(トルシアボルト)

図 4-1-4 シャーレンチによる締付け

図 4-1-5 ピンテール仕上げ専用機

(2) 高力六角ボルト

図 4-1-1(b)は六角ボルトの作業項目を示すが、①の予備試験の手順は、ボルトを図 4-1-2に示す油 圧式の軸力計に挿入し、予備試験で使用するボルトの製品検査証明書に記載されているトルク係数値 (規定値は表4-1-2参照)と導入軸力(設計ボルト軸力の10%増し)から算出したトルクで、ナットラン ナーを用いてボルトを締付ける。そして、ボルトに導入された軸力(軸力計の針での軸力の読み値)と トルク(図 4-1-7に示すトルクレンチの針でのトルクの読み値)から式(4-1-1)を用いてトルク係数値 を算定する。これを5本以上のボルトで行い、その平均値からトルク係数値を算定した上でその日のト ルクを設定する。設定後は、予備試験確認シートに記録する。

ボルト締付け作業として、トルシアボルトと同様、②のボルトの挿入、ナットの手締め、③の予備締め(導入軸力の60%軸力)および④のマーキングを行う.⑤の本締めは、予備試験で求めたトルクを図 4-1-6に示すナットランナーに入力(セット)し、ボルト締付けを行う.このナットランナーは、設定 したトルクに達すれば、自動的に締付け作業を終える機器である.

締付け検査として,⑥でマーキングのずれを確認し,共回りがないこと確認する.そして,⑦のトルクの検査を行うが,締め付けたボルトー群の10%のボルトの締付けトルクの検査を行う^{1),2)}.トルクの検査は当日の作業終了後,図4-1-7に示すトルクレンチを用いて行い,締付け作業者,記録者および立合い者の3名で通常行い,締付けトルクが所定のトルクであることを確認する.そして,検査記録シートに記入する.

規定	トルク係数値
道路橋示方書の規定1)	0.110~0.160
JIS B 1186の規定 ⁶⁾ (鉄道橋・建築鉄骨)	0.110~0.150(*1)

表 4-1-2 六角ボルトのトルク係数値管理の規定値

*1:セットの種類 A

$$k = \frac{T}{d \times N} \cdot \cdot \cdot (4-1-1) \qquad k : hルク係数値$$
$$T : hルク(N \cdot m)$$
$$d : ボルト径(m)$$
$$N : ボルト軸力(N)$$

図 4-1-6 ナットランナーによる締付け

図 4-1-7 トルクレンチによるトルク確認

(3) 溶融亜鉛めっき高力ボルト

図 4-1-1(c)はめっきボルトの作業項目を示すが、ナット回転法では、トルシアボルトや六角ボルト で行う予備試験で確認する項目はなく、②のボルト挿入・ナットの手締めからボルト作業が始まる.③ の予備締めは、道路橋ではスナッグタイト、すなわち、接触面の肌隙がなくなる程度にトルクレンチで 締めた状態又は組み立て用スパナで力いっぱい締めた状態としている¹⁾. 架設現場ではインパクトレン チで締め付ける場合が多い.一方、鉄道橋および建築鉄骨では、トルクで規定しており、M22では約150N・ m、M24では約200N・mとしている^{2).5)}. その後、④のマーキングを行う. ここでのマーキングは、図 4-1-3 に示すトルシアボルトや六角ボルトと位置が異なり、図 4-1-8に示すナットのコーナー部にマーキング する. その後、⑤の本締めをナット回転角専用レンチで120°ナットを回転させるが、その専用レンチ は高い精度で締付けができる.⑥の目視確認は、④ではコーナー部でマーキングしたが、ナット形状は 六角形であり、1コーナーを回転すれば60°回転するので、120°の回転は2コーナー回転すればよく、 目視で120°の回転を確認することができる.必要に応じてナット回転角用の回転定規を使用すること もある.

なお、ボルト長が径の5倍を超える場合は、事前に予備試験を実施して目標回転角を決定することが 各規準に記載されている.

(4) 締付け法の違いによる作業の比較

(1)~(3)で示したように、使用するボルトにより締付け方法や検査方法等が大きく異なる.ただし、 ボルト締付け作業については、使用する機器や締付け方法が異なるものの、いずれも機械式の専用機器 を用いており、作業時間に大きな違いは生じないとものと考えられる.

作業時間に違いが生じると考えられる項目として、予備試験の有無、締付け後の検査および締付け後

の作業の有無である. 締付け法の中で, めっきボルトで使用するナット回転法は, 予備試験を行う必要 はなく, また, 締付け後の検査も目視のみで, 六角ボルトやトルシアボルトのようなトルクの実測作業 やその後の作業(仕上げ等)を行う必要がなく, 最も作業工程が少ない施工方法であり, ボルトの施工 としては最も効率のよい締付け法であると考えられる.

トルシアボルトと六角ボルトの大きな違いとしては,前者はピンテールの破断面の仕上げ作業があり, 後者はトルクレンチによる締付けトルクの実測作業がある.そこで,トルシアボルトと六角ボルトの予 備締め以降の実作業も含めて作業時間の実測を行い,作業時間を定量的に評価することとする.

4-1-2 計測方法

計測は,鉄道・運輸機構および橋梁製作会社5社で行い,鈑桁橋あるいは箱桁橋の構造部材を対象と した.六角ボルトの締付けでは,新規の高力ボルトであれば仮設部材でも対象としたが,反力レバーが 空回りするボルト中心間隔が大きい継手,狭隘箇所などでトルシアボルトが適用できないために六角ボ ルトを使用した継手は対象外とした.

計測項目は、図 4-1-1に示す③予備締め、⑤本締め、⑥目視による締付け検査、⑦締付けトルクの確認、⑧ピンテール破断面の仕上げとした.なお、トルシアボルトと六角ボルトで同じ作業となる②部材にボルト挿入、ナットの手締め、④マーキングについては計測の対象外とした.さらに、締付け作業の段取り、締付け作業中の作業員の移動、ドリフトピンを挿入して孔位置を合わせる作業は、現場条件や構造条件で時間差が生じ、定量的な判断ができないと考えて計測の対象外とした.

4-2 調査結果

計測結果を表 4-2-1 に示す.計測数量は、トルシアボルト(本節のみ S10T と略す)では 41 継手 3590 本のボルト、六角ボルト(本節のみ F10T と略す)では 14 継手 1484 本のボルトを計測した.計測結果は、継手毎に計測した締付け時間を1本当りの締付け時間に算定してその平均値を示した.また、目視検査、締付けトルクの確認、ピンテール破断面の仕上げも同様に継手毎に集計した.

以下の 4-2-1~3 ではボルト締付け時間,検査時間,施工後作業時間の各作業について,計測結果で示された特徴を箇条書きで示す.

4-2-1 ボルトの締付け

・締付け時間の合計は、S10Tの全姿勢よりもF10Tの全姿勢の方が約1.4秒/本早い.

- ・本締めは,S10T と F10T の全姿勢で比較すると差はほぼなかった.作業環境で比較すると S10T では上空よりも地組箱内の方が約0.9秒/本遅いが,F10T では上空よりも地組の方が約1.5秒/本早い.
- ・本締めにおいては、S10Tではシャーレンチ(図 4-1-4参照)を使用し、F10Tではナットランナー(図 4-1-6 参照)を使用している.シャーレンチがピンテールを破断する時間とナットランナーが所定のトルクに達する時間の差があるものの地組や上空での作業環境による差が大きいと考えられる.ちなみに、シャーレンチとナットランナーでは、ナットランナーの方が締付け時間は短い傾向にあり、ナットランナーは反力レバーの回転時間が短いほど早くなり、シャーレンチの方は破断したピンテールの回収にてまどると遅くなる.

佐てギれし						締	付け時	間	目視	, .			ピンテール破断面の仕上げ					
		施.	Lホルト			((秒/本) 検			食査 トルクの確認			専用機			グラインダ		ダ
径	等級	作業 環境	姿勢	継手 数	本数	予備 締め	本 締 め	合計	秒/本	継手 数	本数	秒/本	継手 数	本数	秒/本	継手 数	本数	秒/本
		11.45	下向き	15	996	2.9	4.8	7.7	0.5	_	—	_	-	_	_	—	—	_
		地組箱内	横向き	10	1,612	2.8	4.5	7.2	0.5		-	_	_	—	_	-	—	_
		101.1	全姿勢	25	2,608	2.9	4.7	7.5	0.5		—	-	_	-	-	—	-	-
	S10T		下向き	10	424	5.3	4.1	9.4	0.5		-	_	1	27	26.2	1	80	9.3
		上空	横向き	6	558	4.9	3.4	8.2	0.5		-	_	1	40	19.0	1	208	4.4
			全姿勢	16	982	5.2	3.8	9.0	0.5		-	_	2	67	22.6	2	288	6.8
พรร		全姿勢		41	3590	3.9	4.3	8.2	0.5	_	_	_	2	67	22.6	2	288	6.8
MZZ			下向き	4	180	1.8	3.1	4.9	0.5	4	18	9.0	-	-	_		_	-
		地組	横向き	4	960	3.2	3.9	7.1	0.5	4	100	24.1	—	—	—	—	—	—
			全姿勢	8	1,200	2.6	3.5	6.1	0.5	8	124	16.6	_	—	—	—	—	—
	F10T		下向き	4	32	2.8	5.5	8.2	0.7	4	8	21.6	_	—	—	—	—	—
		上空	横向き	2	252	2.9	4.1	7.0	0.6	2	26	35.3	_	-	—	—	-	-
			全姿勢	6	284	2.8	5.0	7.8	0.6	6	34	26.2	_	-	—	—	—	-
		全	姿勢	14	1484	2.7	4.2	6.8	0.6	14	158	20.7	_	_	_	_	_	_

表 4-2-1 計測結果

※ S10T:トルシアボルト, F10T:六角ボルト

- ・予備締めは、S10T の全姿勢よりも F10T の全姿勢の方が約 1.2 秒/本早い. 作業環境で比較すると S10T では上空よりも地組箱内の方が約 2.3 秒/本早いが F10T では差はなかった. これは、両ボルトともに 締付け機はインパクトレンチを使用しており、作業環境として足場の制約、構造条件として連結板周 辺にウェブや補剛材の近接、または連結板にスタッドジベルがあると締付け時間が長くなる傾向があ る.
- ・予備締めと本締めを比較するとS10Tの全姿勢では本締めよりも予備締めの方が0.4秒/本早く,F10Tの全姿勢も同様に1.5秒/本早い.これは、差の大きいF10Tでは予備締めに使用するインパクトレンチと本締めに使用するナットランナーの性能の違いであり、インパクトレンチは締付けトルクの誤差は大きいが作業時間は早いのに対して、ナットランナーは締付けトルクの誤差は小さいが作業時間は長くなる.なお、S10Tの上空での予備締めがその他の作業環境と比較して時間を要しているが、16継手中13継手が同一現場での結果であり、集計後のヒアリングでは予備締めは若手クラスが、本締めは職長クラスが担当しており、上空での作業で熟練度の差が大きく現れた結果と考えられる.
- ・下向き、横向きの姿勢の違いを締付け時間の合計で比較すると、S10Tでは下向きよりも横向きの方が 早く、地組箱内で0.5秒/本、上空で1.2秒/本の差があった。しかし、F10Tでは地組において下向き より横向きの方が2.2秒/本遅く、上空においては下向きより横向きの方が1.2秒/本早い。これは、 F10Tの地組において下向きがその他の結果と比較して早い。この結果は同一現場の4継手から得られ た結果であり、その他の現場でもあり得る時間ではあるものの早い時間のみが集計された結果である。

4-2-2 検査

・目視検査は, S10T で 0.5 秒/本, F10T で 0.6 秒/本であった.施工ボルトの等級,作業環境,姿勢に かかわらず,同程度の結果であった.

- ・ 締付けトルクの確認は、地組の全姿勢で 16.6 秒/本、上空の全姿勢で 26.2 秒/本であった.
- ・締付けトルクの確認では、作業環境による影響が大きく、重くて長いトルクレンチ(図 4-1-7 参照)
 を取り扱うため、ソケットのナットにセットするときやグリップを回転する際に補剛材や二次部材と
 干渉することによって時間を要したと考えられる。

4-2-3 施工後作業

- ・ピンテール破断面の仕上げは,専用機(図 4-1-5 参照)の全姿勢が 22.6 秒/本, グラインダーの全姿 勢が 6.8 秒/本であった.
- ・ピンテール破断面の仕上げ作業は、専用機が破断面の凹部の底まで全体を削る必要があるのに対して、 グラインダーは凹部を集中して仕上げられるため研削量を少なくできる.ただし、グラインダーはピンテール破断面の円周部の仕上げには不向きである.

4-2-4 トルシア形高力ボルト S10T と高力六角ボルト F10T の作業時間の違い

各作業時間は、4-2-1~3の項に示したが、本項では S10T および F10T の各作業、各作業工程および合計時間の違いを検討する. 表 4-2-2 は、表 4-2-1 で示した作業時間の各工程の平均値を集計した結果をボルト1 本あたりの作業時間で示す. なお、F10T の締付けトルクの確認は、実作業として 20.7 秒/本を要するが全体の 10%のボルトを対象に実施するので、ここでは全ボルトに対する時間としてボルト1本あたり 2.1 秒に換算している.また、S10T のピンテール破断面の仕上げは作業時間が早いグラインダー処理を対象に示している.

ボルト締付け工としては、S10T で 8.7 秒/本,F10T で 9.5 秒/本であり、F10T の方がボルト1本当た り 0.8 秒であるが作業時間は長くなった.これに現場塗装工として行われる S10T のピンテール破断面 の仕上げ時間を考慮すれば、ボルト1本当たり S10T の方が 6.0 秒(15.5-9.5 秒)長く時間を要し、作 業時間が逆転した.例えば、積算上の1日の最大締付け本数 1670 本を施工したと仮定すれば、S10T で は 167 分/日(1670×6÷60)多くの時間を要する結果となる.

I			ボルト絲	現場塗装工			
	種別	締付け 時間	目視検査 時間	トルク確認 時間	合計	破断面 仕上げ時間	合計
	S10T	8.2	0.5	_	8.7	6. 8 ^(*2)	15.5
	F10T	6.8	0.6	2. 1 $^{(*1)}$	9.5	—	9.5

表 4-2-2 各作業時間の比較 (単位:秒/本)

注)*1:検査は全数の10%であり,全数量の対する1本当たりで換算. *2:グラインダー仕上げで計算.

4-3 考察

前節においてボルト施工に関する作業時間は、ボルト締付け工では六角ボルトの方が0.8秒/本長いが、 現場塗装工(塗装直前でのピンテール破断面の仕上げ)を考慮するとトルシアボルトの方が6.0秒/本長 くなることを示した.しかしながら、土木建築の構造物に使用される高力ボルトの90%強がトルシアボ ルトであるとの文献¹¹⁾もあり、大半の橋梁技術者は、トルシアボルトの方が作業効率がよいとの認識を 持っている可能性が高い.ここでは、その理由を考察する.

六角ボルトの採用が少ない要因として、予備試験での「締付けトルクの設定」と締付け後の「締付け トルクの確認」の2項目が考えられる.トルシアボルトの予備試験では、4-1-1(1)で示した5本のボルト 軸力を確認するだけであるが、六角ボルトでは、4-1-1(2)で示した5本以上のボルト軸力の確認だけで なく、トルクレンチで締付けトルクを確認し、この両者からトルク係数値を算出した上でその日の締付 けトルクを設定する必要があり、トルクの設定が煩雑であることが1つの理由と考えられる.もう1つの 締め付け後のトルクの確認では、各基準では締め付けたボルトー群の10%のボルトの締め付けトルクの 検査を行う必要がある^{1),2)}.これを当日の作業終了後、締付け作業者、記録者および立合い者の3名で行 い、検査書類を作成する.このような作業はトルシアボルトにはなく、六角ボルトでは単純に一工程の 作業が増える以上に負担があることが敬遠される要因と思われる.事実、締付けトルク確認の作業まで は、六角ボルトの方が0.8秒/本トルシアボルトより時間を要した.

一方,トルシアボルトではピンテール破断面の処理が十数年前から定着してきた.これは,塗装の密 着性を向上させるためであるが,この作業は塗装直前に素地調整の一作業として塗装工が行っている. すなわち,ボルト締付け作業と切り離されているため,総合的な検証が行われてこなかった.ちなみに, 今回の計測結果から締付けトルクの確認は3人工,ピンテール破断面の仕上げは1人工であることを考慮 すると,作業時間は締付けトルクの確認では(20.7秒/本×10%×3人工=)6.2秒/本・人工,ピンテー ル破断面の仕上げ(グラインダー)では(6.8秒/本×100%×1人工=)6.8秒/本・人工となり,人工を 考慮しても締付けトルクの確認の方が作業時間は短く,専用機(22.6秒/本)を使用すればトルシアボル トの方が作業時間はさらに長くなる.

以上のように、架設担当技術者(現場代理人や主任技術者等)やボルト締付け作業者にボルト施工に ついて確認すれば、ピンテール破断面の仕上げ作業には関与せず、むしろ六角ボルトでは自ら締付けト ルクの確認を行うので、一工程多い六角ボルトの方が負担が大きいと述べる.これまで、作業に関する ヒアリングは当然ながら架設担当技術者に行っていた.つまり、トルシアボルトの方が作業時間が短い と考えられるのはピンテール処理を考慮していなかったことが要因と考えられる.

なお,予備試験での比較については施工時間調査では実施していないが,3章,5章によれば,最近 の六角ボルトの予備試験は5本のボルトで実施されており,施工基準が制定された当初に10本~20本 の試験を実施した頃と比較すれば機械制御のバラツキは少なくなっていると考えられ,作業負担は軽減 されていると推測される.

なお、今回の比較では対象としなかったが、トルシアボルトと六角ボルトを比較する場合、以下の違いがあることも留意頂きたい.

・ボルト頭の形状の違いから塗装面積が異なる. 六角ボルト(M22:6.70 m²/1000 本)ではトルシアボルト(M22:5.06 m²/1000 本)の約3割増の塗装面積となる.

・ボルトが共回りした場合には、トルシアボルトは丸頭でボルト本体を押えにくいため取り外しが容易 ではない場合がある.

・トルシアボルトには温度依存性があり、導入軸力の確認が困難である.

・六角ボルトはワッシャーが2枚必要で、トルシアボルトはワッシャーが1枚である.

セット購入時はボルト,ワッシャー(1枚),ナットのセットと別途ワッシャーが搬入される.そのため,連結時のボルト挿入前に,ボルトセットの組み直し作業をする必要がある.ボルト挿入作業時においても当然ながら,2枚あるワッシャーに注意しながら作業することになる.

六角ボルトは、トルシアボルトよりも 5mm 長いボルトを使用する.六角ボルトはトルシアボルトより 10円/kg 値段が高い(建設物価¹²⁾)ことに加えて 5mm 分(M22:約 15g/組)増加する.

4-4 締付け作業の課題

本章ではトルシアボルトと六角ボルトの作業時間の計測をおこなった.一般に六角ボルトよりトルシ アボルトの方が作業性がよいとの認識が一般的であり,設計時の使用ボルトの選定でトルシアボルトを 選定してきた.しかし,ボルト施工の実際の作業時間は,ピンテールの破断面を仕上げる必要性が生じ た場合,トルシアボルトは六角ボルトより作業時間が増える.本計測結果から判断すると,ボルト1本 当たりトルシアボルトは六角ボルトより6秒多く時間を要する結果となった.

トルシアボルトでは、破断面の仕上げに時間を要することで作業時間が多くなるが、その仕上げ程度 については必要条件が明確ではない. ピンテール破断面の仕上げは削る量により作業時間が左右される ためその検証が必要である. なお、耐候性鋼材を使用した無塗装橋梁ではピンテール破断面の仕上げが 不要である.

六角ボルトでは、トルク確認による時間とその書類整理に時間を要する.トルク確認では、大きくて 重いトルクレンチを連結部周辺の部材を避けながら使用する必要があり、高力ボルトの締付けトルクが 大きいこともあり、人力では必要アーム長がどうしても長くなる.ただし、最近では、確認したトルク や回転角のデータをタブレット端末等に送信できる機能がある機種もあり、データ整理は今後省力化さ れていくことが予想される.機械の開発に期待することになるが、小型のトルクレンチで力作業がなく なれば時間短縮に加えて省力化ができるもと考えられる.

今回作業時間計測を実施していないナット回転法は、4-1-1(4)で示したようにトルシアボルトおよび 六角ボルトを用いたトルク法よりも作業項目が少ない締付け方法である.しかし、ナット回転法の適用 はF8Tのみであり、強度の高いF10Tでの適用は認められていない^{1),2)}.これは、ナット回転法での締付 けは、導入軸力が高くなり、遅れ破壊を懸念しているからである.これについては、道路橋示方書でボ ルト規定が初めて示された昭和48年度版から変更されていない.

F10T のナット回転法の適用に向けた検討は,昭和41 年から日本鋼構造協会の接合小委員会で行われた⁷⁾. ここでは,遅れ破壊に関して,通常の使用条件であれば生じる可能性は少ないとし,適用事例を 増やして一般化させることがよいとされた.その後,締付け作業および施工検査の簡素化を図ることを 目的とし,実構造物での適用に関する検討も行われ^{8),9)},実施工が行われた¹⁰⁾.その後40年,F10Tで のナット回転法を適用した事例は報告されていない.また,適用された当時の接触面は,黒皮を除去し た粗面状態であり,現在の主流である厚膜型無機ジンクリッチペイントを施した接触面でF10Tを適用 した事例はなく,また,その適用性は不明であった.そこで,II編では,F10Tのナット回転法の適用の 拡大に向けた検討を行った.ここでは,ボルトをF10TのM22,M24を用い,鋼材の板厚の薄板,中板お よび厚板を用いて,導入軸力試験,リラクセーション試験およびすべり耐力試験を実施し,実用化に向 けた基礎データを取得した.詳細は,II編を参照されたい.

現状では、ナット回転法は、適用するケースが少ないので、ほとんど作業性を検討されることがなかったが、4-1-1(3)で示したようにその他のボルト施工法と比較して、予備試験を行う必要はなく、また、 締付け後のトルクの実測や施工後の作業(仕上げ等)を行う必要もなく、最も作業項目が少ない施工法であり、定性的には最も効率のよい締付け法であると考えられる.ただし、その作業の実測は実施でき
ていないので、今後、これを行い定量的にナット回転法の作業効率を評価していく必要があると考えられる.また、ボルト施工の効率化を考えた場合、ナット回転法の適用の拡大を図っていくことも重要であると考えられる.

参考文献

- 1) 日本道路協会:道路橋示方書·同解説-II 鋼橋·鋼部材編,2017.11.
- 2) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説(鋼·合成構造物), 2009.7.
- 3) 日本道路協会:摩擦接合用トルシア形高力ボルト・六角ナット・平座金のセット・解説, 1983.10
- 4) 鉄道総合技術研究所: 摩擦接合用トルシア形高力ボルト・六角ナット・平座金のセット, 鋼鉄道橋規格(SRS), 2010.8.
- 5) 日本鋼構造協会:構造用トルシア形高力ボルト・六角ナット・平座金のセット・解説, JSS II 09-2015, 2015.3.
- 6) 日本産業規格: JIS B 1186「摩擦接合用高力六角ボルト・六角ナット・平座金のセット」, 2013
- 7) 田島二郎, 青木博文, 田中淳夫, 小林昌一, 北後寿: ナット回転法の提案, JSSC 協会誌, Vol.9, No.89, pp17-31, 1973.5.
- 8) 板垣秀克,和泉公比古:回転法のF10Tへの適用,首都高技報,No.7, pp136-139, 1975.3.
- 9) 和泉公比古,板垣秀克:回転法のF10Tへの適用(その2),首都高技報, No.9, pp136-138, 1977.3.
- 10) 大貫一生: F10T ボルトの回転法による施工,首都高技報, No.9, pp130-133, 1977.3.
- 11) 日本鋼構造協会:高力ボルト接合技術の現状と課題,2013.3.
- 12) 建設物価調査会:建設物価, 2018.6.

5. ボルト施工の作業項目調査

鋼橋の架設現場では、それぞれの現場において施工計画書を作成して施工している.施工計画書をも とにボルト施工を実施しているため、施工計画書に記載されている項目・内容は実際の現場で実施して いる作業となる.そこで、施工計画書および関連基準との関係性を整理することで、実際の現場施工と 基準の関係を確認する.

5-1 施工計画書の調査および調査対象

ボルト施工項目の調査は、橋梁製作会社7社17工事の施工計画書を調査した.また、関連基準は、 道路橋示方書¹⁾(以下,道示)、鋼道路橋施工便覧²⁾(以下,施工便覧)、土木工事共通仕様書³⁾(以下, 共通仕様書)を調査した.施工計画書の調査では、作業項目を抽出して現場で実施されている作業内容 および管理項目について確認し、関連基準との関係性を整理する.調査対象とするボルトは、トルシア 形高力ボルト(以下、トルシアボルト)、高力六角ボルト(以下、六角ボルト)、溶融亜鉛めっき高力ボ ルト(以下、めっきボルト)の3種類で整理した.調査した施工計画書はトルシアボルト7工事、六角 ボルト5工事、めっきボルト5工事であった.

5-2 調査結果

施工計画書の調査で対象とした3種類のボルトで共通した項目は、①フローチャート、②ボルトの保管、 ③軸力計の検定、④現場予備試験、⑤締付け作業要領、⑥検査の6項目であった.それぞれについて詳細 項目を抽出し、その記載の有無を調査する.施工計画書はボルトの種類毎にまとめ、施工計画書をA~Q の記号で示した.また、①~⑥の項目それぞれについて関連基準との関係性について整理した.

5-2-1 フローチャート

フローチャートに記載されていた詳細項目は,施工順に「購入」「輸送」「保管」「現場出庫」「軸力計 の点検」「締付け機の整備点検」「現場予備試験」「接合面処理」「仮ボルト締付け」「ボルト挿入」「予備 締め」「マーキング」「本締め」「検査」「共回り等による入替」の15項目であり.対象とした3種類の ボルトは締付方法や使用機械が異なるが記載された詳細項目は共通していた.

表 5-2-1 にフローチャートの記載項目と関連基準の規定項目を示す.表中の数値は各関連基準の章節 番号である.フローチャートに記載された項目は,概ね関連基準に規定されている項目であるが,「購 入」「現場出庫」「ボルト挿入」については関連基準に記載はなかった.フローチャートは,施工手順を 示すものであり,「購入」「現場出庫」は作業の始まりを,「ボルト挿入」は挿入方向に注意する必要が あることから作業要領して必要な項目であることが考えられる.また,「購入・輸送」からスタートす るフローチャートと「現場予備試験」からスタートするフローチャートがあった.

表 5-2-2 にトルシアボルトのフローチャートに関する記載項目を示す.表中の〇印は記載されていた ことを示す.また,すべての施工計画書に記載された項目は濃い朱色でハッチングし,半数以上の施工 計画書で記載された項目を薄い朱色でハッチングした.

トルシアボルトですべての施工計画書に記載された項目は、「現場予備試験」「予備締め」「マーキン グ」「本締め」の4項目であった.また、少数の項目は、「現場出庫」「締付け機の整備点検」(3工事)、「仮 ボルトの締付け」(2工事)の3項目だった.

衣 3-2-1 ノローナヤート記載項日と関連奉华の登

フローチャートの 記載項目	道示 ¹⁾	施工便覧 ²⁾	共通仕様書 ³⁾
購入			
輸送	20.9.2 高力ボルトの品質管理及び保管	2.3.4 保管·運搬	
保管	20.9.2 高力ボルトの品質管理及び保管	3.5.6(3)高力ボルトの保管	6. ボルトの包装と現場保管
現場出庫			
軸力計の点検	20.9.4 ボルトの締付け 2)機械器具の検定	3.5.6 (5) トルク法による施工 3) 軸力計及びトルクレンチの検定	3 .ボルトの締付け
締付機の整備点検	20.9.4 ボルトの締付け 2)機械器具の検定	3.5.6 (5) トルク法による施工4) 締付け機の検定	3 .ボルトの締付け
現場予備試験	20.9.4 ボルトの締付け 3) 締付けボルト軸力	3.5.6 (5) トルク法による施工 5) 締付け機の調整 3.5.6 (6) ナット回転法による施工	4 .締付けボルト軸力
接合面処理	20.9.1 施工一般 4)接合面の処理方法 20.9.3 接合面の処理	3.5.6 (5) トルク法による施工 1) 接合面の処理	 1.一般事項 (1) 接触面を塗装しない場合 (2) 接触面を塗装する場合
仮ボルト締付け	20.11.4 組立	3.5.5 部材の組立	
ボルト挿入			
予備締め	20.9.4 ボルトの締付け 1) ボルトの締付け	3.5.6 (5) トルク法による施工 6) ボルトの締付け 3.5.6 (6) ナット回転法による施工	5 .ボルトの締付け順序
マーキング	20.9.4 ボルトの締付け 4) 締付け順序 20.9.5 締付け完了後の検査	3.5.6 (5) トルク法による施工 6) ボルトの締付け 7) 検査 3.5.6 (6) ナット回転法による施工	5 .ボルトの締付け順序 7. 締付け確認
本締め	 20.9.1 施工一般 3) 締付け方法並びに締付け軸力の管理 および検査方法 20.9.4 ボルトの締付け 1) ボルトの締付け 3) 締付けボルト軸力 4) 締付け順序 	3.5.6(5)トルク法による施工 6)ボルトの締付け	3 .ボルトの締付け 4. 締付けボルト軸力 5. ボルトの締付け順序
検査	20.9.1 施工一般 3) 締付け方法並びに締付け軸力の管理 および検査方法 20.9.5 締付け完了後の検査	3.5.6 (5) トルク法による施工 3) 軸力計及びトルクレンチの検定 7) 検査 3.5.6 (6) ナット回転法による施工	7 .締付け確認
共回り等による入替	20.9.5 締付け完了後の検査	3.5.6 (5) トルク法による施工 7) 検査	

表 5-2-3に六角ボルトのフローチャートに関する記載項目を示す.六角ボルトでは、5工事中4工事 がフローチャートを記載していた.記載した4工事のすべてに記載された項目は、トルシアボルトと同 様の4項目に「接合面処理」を加えた5項目であった.少数の項目は「購入」「現場出庫」「軸力計の点 検」「締付け機の整備点検」「共回り等による入替」(2工事),「仮ボルト締付け」(1工事)の6項目だっ た.トルシアボルトと比較すると簡素化されている傾向があった.理由として、トルシアボルトを主に 使用し、六角ボルトは限定的に使用していることが理由と考えられる.

表 5-2-4 にめっきボルトのフローチャートに関する記載項目を示す.めっきボルトでは、すべての施 工計画書に記載された項目はトルシア形高力ボルトと同様の4項目であった.少数の項目は、「軸力計 の点検」「締付け機の整備点検」が2社、「仮ボルトの締付け」が1社の3項目であった.関連基準にお いて、めっきボルトの締付け方法であるナット回転法では、ボルト長さがボルト径の5倍以下の場合に 予備試験の記載はない¹⁾が、全社で現場予備試験を記載していた.

フローチャートの記載項目の集計から、ボルトの施工手順として、「現場予備試験」「予備締め」「マー キング」「本締め」の4項目が最も重要であること推察される.

詳細項目	A	В	С	D	Е	F	G
購入	0	0		0		0	
輸送	0	0	0	0	0	0	
保管	0	0		0	0	0	
現場出庫		0		0		0	
軸力計の点検	0			0	0	0	
締付機の整備点検	0				0	0	
現場予備試験	0	0	0	0	0	0	0
接合面処理		0		0	0	0	0
仮ボルト締付け			0				0
ボルト挿入	0		0	0	0	0	0
予備締め	0	0	0	0	0	0	0
マーキング	0	0	0	0	0	0	0
本締め	0	0	0	0	0	0	0
検査	0		0	0	0	0	0
共回り等による入替	0		0	0	0	0	

表 5-2-2 トルシアボルトのフローチャートに関する記載項目

表 5-2-3 六角ボルトのフローチャートに関する記載項目

詳細項目	н	Ι	J	к	L
購入	0		0		
輸送	0		0	0	
保管	0		0	0	
現場出庫	0		0		
軸力計の点検			0	0	
締付機の整備点検			0	0	
現場予備試験	0		0	0	0
接合面処理	0		0	0	0
仮ボルト締付け					0
ボルト挿入			0	0	0
予備締め	0		0	0	0
マーキング	0		0	0	0
本締め	0		0	0	0
検査			0	0	0
共回り等による入替			0	0	

表 5-2-4 めっきボルトのフローチャートに関する記載項目

詳細項目	М	Ν	0	Р	Q
購入	0	0	0		
輸送	0	0	0		
保管	0	0	0		
現場出庫		0	0		
軸力計の点検	0		0		
締付機の整備点検	0		0		
現場予備試験	0	0	0	0	0
接合面処理		0	0		0
仮ボルト締付け					0
ボルト挿入	0		0	0	0
予備締め	0	0	0	0	0
マーキング	0	0	0	0	0
本締め	0	0	0	0	0
検査	0		0	0	0
共回り等による入替	0		0	0	

5-2-2 ボルトの保管

ボルトの保管においては、トルシアボルトとめっきボルトで「湿気対策」「衝撃対策」「保管期間」「開 封時の注意」「開封後の注意」「降雨対策」「整理整頓」「不具合発生時の対応」の8項目が共通で記載さ れていた.六角ボルトでは、「衝撃対策」「降雨対策」の記載はなく、「納品時の検査記録の確認」が記 載されていた.

表 5-2-5 にトルシアボルトのボルト保管に関する記載項目を示す.すべての施工計画書に記載されて いた項目は、「湿気対策」「開封時の注意」の2項目であった.また、少数の項目は、「整理整頓」「不具合 発生時の対応」(3工事)、「保管期間」(2工事)、「降雨対策」(1工事)の4項目だった.特にトルシア ボルトでは、潤滑油の不足や劣化によって締付け時の導入軸力に影響を及ぼすことが懸念されるため、 湿気対策と開封時の注意がすべての工事で記載されていることはボルトの取り扱いに注意しているこ とが推察される.

表 5-2-6 に六角ボルトのボルト保管に関する記載項目を示す.すべての施工計画書に共通して記載された項目はなく、半数以上の工事で記載のあった項目が7項目中5項目であった.少数の項目は、「保管期間」(2工事)、「納品時の検査記録の確認」(1工事)だった.施工計画書Iでは、「保管」の項目がなく、一般事項として、納品時の現品とロット番号の照合、および締付け時期を考慮した搬入が記載されているのみであった.「湿気対策」「開封時の注意」「開封後の注意」は4工事で記載されており、重要な項目であることが推察される.

表 5-2-7 にめっきボルトのボルト保管に関する記載項目を示す.すべての施工計画書に記載された項 目は、トルシアボルトと同様に「湿気対策」「開封時の注意」の2項目であった.半数以上の施工計画 書に記載された項目は、「衝撃対策」「開封後の注意」の2項目で、その他5項目は少数項目にとどまっ た.めっきボルトは、溶融亜鉛めっきが表面に付着しており、「衝撃対策」「開封後の注意」に関して記 載が多いことは現場での取り扱いに注意していることが推察される.

ボルトの保管に関して関連基準では、"工事出荷時の品質が現場施工時まで保たれるように、その包 装と現場保管に注意しなければならない"ことが記載されてある.また、品質低下の原因として"雨や 結露等による濡れ、さびの発生、ほこり・砂等のねじ部への付着、乱暴な取扱いによるねじ部の損傷等 により品質の変化が生じやすい"との記載から、「湿気対策」「衝撃対策」「開封時の注意」が記載され ており、ボルトの取り扱いに留意していると推察される.

ボルトの保管期間に関して,施工便覧²に"工場出荷後6ヶ月以上経過した場合には,潤滑油の不足 や劣化による品質及び施工性の低下,発せいがないことを確認するとともに,締付軸力, トルク係数 値の再検査を行うことが望ましい。"との記載があり,記載された施工計画書では6ヶ月を目安として いた.

詳細項目	Α	В	С	D	Е	F	G
湿気対策	0	0	0	0	0	0	0
衝撃対策	0		0			0	0
保管期間	0		0				
開封時の注意	0	0	0	0	0	0	0
開封後の注意		0	0	0	0	0	0
降雨対策	0						
整理整頓		0		0		0	
不具合発生時の対応		0		0	0		

表 5-2-5 トルシアボルトのボルト保管に関する記載項目

詳細項目	Н	Ι	J	К	L
湿気対策	0		0	0	0
保管期間	0	0			
開封時の注意	0		0	0	0
開封後の注意	0		0	0	0
整理整頓	0		0	0	
納品時の検査記録の確認		0			
不具合発生時の対応	0		0	0	

表 5-2-6 六角ボルトのボルト保管に関する記載項目

表 5-2-7 めっきボルトのボルト保管に関する記載項目

詳細項目	М	Ν	0	Ρ	Q
湿気対策	0	0	0	0	0
衝撃対策	0			0	0
保管期間	0				
開封時の注意	0	0	0	0	0
開封後の注意		0	0		0
降雨対策	0				
整理整頓		0	0		
不具合発生時の対応		0	0		

5-2-3 軸力計の検定

軸力計の検定に関する詳細項目ついては、「検定時期」「判定基準」の2項目が3種類のボルトすべて で共通していた.軸力計は、主に現場予備試験で使用する機械であり、検定時期とその判定基準は関連 基準に規定されている.

表 5-2-8 にトルシアボルト,表 5-2-9 に六角ボルト,表 5-2-10 にめっきボルトの軸力計の検定に関する記載を示す.少数であるが,記載のない施工計画書もあった.

軸力計の検定に関して関連基準では、現場搬入直前に1回、定期検定は3ヶ月に1回を標準としており、ボルト締付け期間が3ヶ月以内であれば施工計画書に記載する必要性が薄れるものと考えられる. また、めっきボルトは、ボルト径の5倍以下は規定の回転角を本締めであたえればよく、予備試験は必要ない.ただし、鋼橋で使用されるボルト径はM22が標準で、近年では合理化桁等の厚板が使用されて ボルト長110mm以上のボルトも多くみられることから、ボルト径の5倍を超えたボルトの回転角を決め るための予備試験を実施していることや 5-4-2(3)に詳述するが締付け機械の確認のために予備試験を 実施していることが施工計画書に記載されていた.

表 5-2-8 トルシアボルトの軸力検定に関する記載項目

詳細項目	А	В	С	D	Е	F	G
検定時期	0			0	0	0	0
判定基準	0			0	0	0	

表 5-2-9	六角ボルトの軸力検定に関する記載項目
---------	--------------------

詳細項目	Н	Ι	J	к	L
検定時期			0	0	0
判定基準			0	0	

詳細項目	М	Ν	0	Ρ	Q
検定時期	0		0	0	0
判定基準	0		0	0	

表 5-2-10 めっきボルトの軸力検定に関する記載項目

5-2-4 現場予備試験

施工計画書の現場予備試験に関する詳細項目については、「締付け機の整備点検」「供試ボルト本数」 「試験の判定値」の3項目が3種類のボルトすべてで共通していた.

表 5-2-11 にトルシアボルトの現場予備試験に関する記載項目を示す.すべての施工計画書に記載されていた項目は「供試ボルト本数」の1項目であった.「締付け機の整備点検」「試験の判定値」「不合格時の対応」においても半数以上で記載があった.

表 5-2-12 に六角ボルトの現場予備試験に関する記載項目を示す.施工計画書 H では予備試験の記載 がないのではなく,詳細項目に関する記載がないということで,現場予備試験により軸力を確認するこ とが記載されていた.

表 5-2-13 にめっきボルトの現場予備試験に関する記載項目を示す.「締付け機の整備点検」「締付け 機の検定」「供試ボルト本数」「試験の判定値」の4項目すべてにおいて半数以上で記載があった. 締付 け機の検定が記載されているのは,回転角の精度に配慮してのことと推察される.

詳細項目	А	В	С	D	Е	F	G
締付け機の整備点検	0	0		0	0		0
供試ボルト本数	0	0	0	0	0	0	0
試験の判定値	0		0	0	0	0	0
不合格時の対応	0		0	0	0	0	0
再不合格時の対応	0			0	0	0	0

表 5-2-11 トルシアボルトの現場予備試験に関する記載項目

表 5-2-12 六	:角ボルトの現場予	「備試験に関す	る記載項目
------------	-----------	---------	-------

詳細項目	Н	Ι	J	К	L
締付け機の整備点検		0	0	0	0
供試ボルト本数		0	0		0
試験の判定値			0	0	0
不合格時の対応			0		

表 5-2-13 めっきボルトの現場予備試験に関する記載項目

詳細項目	М	Ν	0	Ρ	Q
締付け機の整備点検		0	0	0	0
締付け機の検定			0	0	0
供試ボルト本数	0	0	0		0
試験の判定値	0		0	0	0

現場予備試験は、3 種類のボルトでそれぞれの目的が異なる.トルシアボルトと六角ボルトは同じト ルク法に分類され、めっきボルトはナット回転法で締付けるが、その施工方法は締付け機械や作業等が 違うことを4-1-1で述べた.ここでは、基準上の目的について整理する.その後、施工計画書での記載 トルシアボルトは専用締付け機を用いて締付ける.その専用締付け機にはトルクや軸力を調整する機構はなく、機械的にトルシアボルトのピンテールを切断することで軸力を導入する機構になっているこ とから、その導入軸力はボルトの性能(品質)に左右されることになる.そのため、関連基準では、現 場予備試験を実施して、締付け日毎に5本の供試ボルトを抽出し、締付けボルト軸力の平均値が一定範 囲に入っていること、および現場で締付けるまでのボルトの性能が工場出荷時から保持されているかを 確認することを目的として現場予備試験を実施することとされている.ちなみに、トルシアボルトの専 用締付け機(シャーレンチ)では、調整機能がないため、機械の精度の検定は必要なく、点検整備を行 えば良いと記載されているが、その頻度は記載されていない.

六角ボルトは、目標トルクを設定できる締付け機(ナットランナー)で締付ける.六角ボルトでは、 締付け機械の調整を目的として現場予備試験を実施する.道示¹⁾の付録 2-4「トルク法による高力ボル ト摩擦接合継手の施工管理」 5.4 締付け機の調整では、その詳細な方法が記載されている.そこでは、 ボルトのトルク係数値のばらつきや締付け機の出力トルクのばらつき、さらに調整時と施工時の温度差 によるトルク係数値の変化、調整時に用いた軸力計と実部材との剛性の違い、締付け姿勢などによる導 入軸力への影響を懸念している.それらを理由として、調整には5本以上の供試ボルトの軸力の平均値 が締付けボルト軸力の±5%以内に調整するように記載されている.なお、この±5%の範囲は、トルシ アボルトで規定された範囲(常温)よりも厳しい設定となっている.

めっきボルトは、ナット回転法で締付け作業を行う.これは、締付けボルト軸力をボルトの伸びで管理する方法である.関連基準では、接触面の肌隙がなくなる程度にトルクレンチで締めた状態又は組み立て用スパナで力いっぱい締めた状態から以下のa)およびb)に示す回転角を与えることになっている.

- a) ボルト長が径の5倍以下の場合は120°±30°
- b) ボルト長が径の5倍を超える場合は施工条件に一致した予備試験によって目標回転角を決定 する.

そのため,現行の基準では,b)のケースにおいて,回転角を決定する目的として予備試験を実施する ことになる.

施工計画書での予備試験に関する記載内容の特徴を以下に示す.

(1) トルシアボルト

締付け機の整備点検に関して,具体的な整備方法を記載するのではなく,「良く整備された機械を用 いて実施すること」を記載している施工計画書が多数であった.

標準偏差を試験の判定値として記載した施工計画書はなかった. 道示¹⁾の付録 2-1 に示される製品出 荷時検査の合格判定値の軸力と標準偏差のうち,標準偏差は現場では判定値としては用いられていな かった.供試ボルトが5本と少ないことが理由として考えられる.

道示¹では、本文および解説に供試ボルトの本数と軸力の判定範囲が示されている.付録では、本文 および解説の内容に加えて軸力の判定範囲を満足しない場合(不合格)の対応方法が記載され、さらに その対応方法でも満足しない場合の対処措置について記載されている.施工計画書では不合格の対応方 法まで記載する場合が多数であった.

なお,3章において現場予備試験の軸力値を集計しており,集計したデータの中に規定の軸力範囲を

超えるデータはなかった.

(2) 六角ボルト

道示¹⁾の付録 2-4 では、「現場において初めて締付け機を使用する場合には 10 本から 20 本程度の供試 ボルトによる調整を行い、2 日目以降は供試ボルトの数を少なくして調整値がずれていないかどうかを 確認する方法をとればよい.」とあるが、これに準じた記載をした施工計画書はなかった.

実態として現場で初めて締付け機を使用する場合の記載はなく、ボルト本数は5本と記載した場合が 多かった.また、3章におけるデータからも5組の供試ボルトで締付け機の調整を行っていると考えら れる.

(3) めっきボルト

予備試験の内容に関して、ボルト長が径の5倍以内でも現場予備試験を実施しており、その内容は5本の供試ボルトを抽出し、締付け機で目標回転角まで締付けた場合の誤差が±15°以下を確認するものであった.これは記載された施工計画書すべてで共通していた.

5-2-5 締付け作業要領

施工計画書の締付け作業要領に関する詳細項目については,「接合面の清掃」「肌すきの確認」「肌す きの対応」「ボルトの挿入方向」「予備締め」「締付け順序」「マーキング」「予備締め機器」「本締め機器」 「降雨時の作業禁止」「降雨予報時の対応」「1日の施工本数」の12項目が3種類のボルトで共通してい た.その中でも,「予備締め」「マーキング」はすべての施工計画書で記載があり,次いで「接合面の清 掃」「締付け順序」「降雨時の作業禁止」を記載する施工計画書が多かった.

表 5-2-14 にトルシアボルトの締付け作業要領に関する記載項目を示す.すべての施工計画書に記載 されていた項目は、「接合面の清掃」「予備締め」「締付け順序」「マーキング」の4項目であった.半数 以上で記載があった項目は、「肌すきの確認」「ボルト挿入方向」「予備締め機器」「本締め機器」「降雨 時の作業禁止」の5項目で、管理項目に関する内容であった.少数の項目は、「ボルトセットの温度の 確認」と「ピンテールの回収」でトルシアボルトの特性を考慮した記載と考えられる.

表 5-2-15 に六角ボルトの締付け作業要領に関する記載項目を示す.すべての施工計画書に記載され ていた項目は、「予備締め」「締付け順序」「マーキング」の3項目であった.半数以上で記載のあった 項目は、「接合面の清掃」「肌すきの確認」「予備締め機器」「本締め機器」「降雨時の作業禁止」で、ト ルシアボルトと同様の傾向であった.

表 5-2-16 にめっきボルトの締付け作業要領に関する記載項目を示す.すべての施工計画書に記載さ れていた項目は、「予備締め」「マーキング」「本締め」の3項目であった.半数以上で記載のあった項 目は、「接合面の清掃」「肌すきの確認」「ボルト挿入方向」「締付け順序」「予備締め機器」「本締め機器」 「降雨時の作業禁止」で、トルシアボルト、六角ボルトと同様の傾向であった.少数の項目は、「皮膜 の補修」でめっきボルトの特性に配慮した記載と考えられる.

施工計画書での締付け作業要領に関する記載内容の特徴を以下に示す.

(1) 予備締め

トルシアボルトおよび六角ボルトでは,締付け軸力の 60%程度とすることがすべての施工計画書で記載されていた.

めっきボルトでは、一次締めとして、F8TM22の場合、約150N·mで締付けることが記載されており、

その他の径においても締付け目標トルクがすべての施工計画書で記載していた. 道示¹⁾では,「接触面の 肌隙がなくなる程度にトルクレンチで締めた状態又は組立用スパナで力いっぱい締めた状態」との表現 になっているが,現場施工では,明確に管理するために定量的に管理していると考えられる. なお,鉄 道構造物等設計標準⁴⁾の解説では,一次締めのトルク値を管理する場合として「M20,M22:約 150N·m, M24:約 200N·m」の記載がある.

(2) マーキング

目視による検査項目であり、すべての施工計画書で説明図または写真付きで作業要領、判定要領が記載されていた.

(3) 接合面の清掃

ほぼすべての施工計画書に記載されており、除去する付着物・対象物の例が記載されていた.

(4) 肌すきの確認

肌すきの確認または肌すきの防止に関する記載に分けられ、確認方法については目視、防止対策については仮締めボルトを使用することや締付け順序が記載されていた.

(5) 締付け順序

関連基準に締付け順序が記載されており、基準通りに施工するための記載と考えられる.

(6) 降雨時の作業禁止

雨天における作業禁止が関連基準に記載されているが、ほぼすべての施工計画書で、原則禁止として いた.さらに、降雨対策設備や降雨予想の場合の対策を記載する施工計画書もあった.

詳細項目	A	В	С	D	Е	F	G
接合面の清掃	0	0	0	0	0	0	0
肌すきの確認		0	0	0	0	0	0
肌すきの対応		0					0
ボルト挿入方向	0			0	0		0
ボルトセットの温度確認	0						
予備締め	0	0	0	0	0	0	0
仮締めボルトの交換					0		
締付け順序	0	0	0	0	0	0	0
マーキング	0	0	0	0	0	0	0
予備締め機器			0	0		0	0
本締め機器	0		0	0	0	0	0
降雨時の作業禁止	0	0	0	0	0		0
降雨予報時の対応		0				0	0
1日の施工本数			0			0	0
ピンテールの回収					0	0	

表 5-2-14 トルシアボルトの締付作業要領に関する記載項目

詳細項目	Н	Ι	J	К	L
接合面の清掃	0		0	0	0
肌すきの確認	0		0	0	0
肌すきの対応	0				0
ボルト挿入方向			0		0
予備締め	0	0	0	0	0
仮締めボルトの交換				0	
締付け順序	0	0	0	0	0
マーキング	0	0	0	0	0
予備締め機器	0	0	0		0
本締め機器		0		0	0
降雨時の作業禁止	0		0	0	0
降雨予報時の対応	0				0
1日の施工本数					0
ナット締めの原則		0			

表 5-2-15 六角ボルトの締付作業要領に関する記載項目

表 5-2-16 めっきボルトの締付作業要領に関する記載項目

詳細項目	м	N	0	Ρ	Q
接合面の清掃	0	0	0		0
肌すきの確認			0	0	0
肌すきの対応					0
ボルト挿入方向	0		0		0
予備締め	0	0	0	0	0
締付け順序			0	0	0
マーキング	0	0	0	0	0
本締め	0	0	0	0	0
予備締め機器		0	0	0	0
本締め機器			0	0	0
降雨時の作業禁止		0	0	0	0
降雨予報時の対応		0			0
1日の施工本数				0	0
ナット締めの原則				0	
頭締めについて				0	
皮膜の補修					0

5-2-6 検査

検査に関する詳細項目については、「マーキングの確認」「ナット・座金の表裏の確認」「異常時のボルトの交換」の3項目が3種類のボルトで共通していた.また、締付けの確認として、トルシアボルトでは「ピンテール破断の確認」、六角ボルトでは「1 群 10%のトルク検査」、めっきボルトでは「ナット回転量の検査」が3種類のボルトそれぞれに記載されていたが、施工計画書 B, H, N については検査に関する記述がなかった.

表 5-2-17 にトルシアボルトの検査に関する記載項目を示す.すべての施工計画書に記載されていた 項目はなく、半数以上の施工計画書に記載のあった項目は「ピンテール破断の確認」「マーキングの確 認」の2項目であった.少数であった項目は「ナット・座金の表裏の確認」「ネジ山の余長の確認」「異 常時のボルトの交換」の3項目だった.

表 5-2-18 に六角ボルトの検査に関する記載項目を示す.すべての施工計画書に記載されていた項目 はなく、半数以上の施工計画書に記載のあった項目は「10%/群のトルク検査」「マーキングの確認」「異 常時のボルトの交換」「検査不合格時の対応」の4項目であった. **表 5-2-19**にめっきボルトの検査に関する記載項目を示す.すべての施工計画書に記載されていた項目はなく、半数以上の施工計画書に記載のあった項目は「ナット回転量の検査」「マーキングの確認」 「異常時のボルトの交換」「検査不合格時の対応」の4項目であった.少数であった項目は「ナット・ 座金の表裏の確認」「ネジ山の余長の確認」の2項目だった.

関連基準に関する検査項目一覧を表 5-2-20 に示す.

トルシアボルトでは、ピンテールの破断の確認とマーキングによる共回りの確認が各基準で記載されている.検査による異常時の対応は道示¹⁾のみに記載されていた.

六角ボルトでは、トルクレンチを使用すること、各ボルト群の 10%の本数を確認すること、設定トルク値の±10%の範囲であることが記載されている。検査の合否判定や不合格時の対応は、共通仕様書³⁾のみ記載されていない。

めっきボルトでは、全数で120°±30°の範囲であることを確認することが記載されている.

詳細項目	А	В	С	D	Е	F	G
ピンテール破断の確認	0		0	0	0	0	0
マーキングの確認	0		0	0	0	0	0
ナット・座金の表裏の確認				0	0		
ネジ山の余長の確認	0						
異常時のボルトの交換				0	0		0

表 5-2-17 トルシアボルトの検査に関する記載項目

表 5-2-18	六角ボル	トの検	査に関	劇する	記載功	頁目

詳細項目	Н	Ι	J	к	L
10%/群のトルク検査		0	0	0	0
マーキングの確認		0	0	0	
ナット・座金の表裏の確認			0	0	
異常時のボルトの交換		0	0	0	
検査不合格時の対応		0	0	0	0

表 5-2-19	めっきボル	トの検査に関す	る記載項目
----------	-------	---------	-------

詳細項目	М	Ν	0	Р	Q
ナット回転量の検査	0		0	0	0
マーキングの確認	0		0	0	0
ナット・座金の表裏の確認				0	
ネジ山の余長の確認	0				
異常時のボルトの交換	0		0	0	0
検査不合格時の対応	0		0	0	0

表 5-2-20	関連基準の検査に関す	る記載項目
----------	------------	-------

	道示 ¹⁾	施工便覧 ²⁾	共通仕様書 ³⁾
トルシア ボルト	 ・締付け後に速やかに行う ・全数のピンテールの切断の 確認 ・全数のマーキングの確認 ・締忘れは締付け,共回りは 取り替え 	・ピンテールの切断の有無の 確認 ・マーキングによる共回りの 確認	 ・締付け後速やかに行う ・全数のピンテールの切断の 確認 ・マーキングの確認
六角 ボルト	・締付け後に速やかに行う ・各ボルト群の10%のボルト本 数をトルクレンチで検査する ・合否基準は目標トルク値の ±10% ・不合格の場合は倍数検査 ・さらに不合格の場合はその 群の全数検査,目標トルク以 下の場合は増し締め,+10%以 上は取り替え	 ・締付け後に速やかに行う ・トルクレンチで目標トルク 値の±10%の範囲ことを確認 ・不合格の場合は倍数検査 ・倍数検査でも合格しない場合は、その継手の全数検査、 トルク値不足は増締め、10%以上は交換 	・締付け後速やかに行う ・各ボルト群の10%のボルト本 数をトルクレンチで確認
めっき ボルト	 ・締付け後に速やかに行う ・全数のマーキングで設定したトルク±30°の範囲内か確認 ・回転不足は増し締め,回転角が過大の場合は取り替え 	 ・設定したトルクの±30°を 全数のマーキングで確認 ・ボルト長が径の5倍以下の場合:1/3回転(120°±30°), ボルト長が径の5倍を超える場合:予備試験によって回転角を決定 	 ・締付け後に速やかに行う ・全数のマーキングによる外 観検査 [締付けの項目に1/3回転(120 度)±30度を記載]

5-3 考察

以上より,施工計画書に記載された項目と関連基準について比較してきた.

トルシアボルトについては、ほぼ関連基準の内容に沿って施工計画書に詳細項目が記載されていた. ボルトの保管から開封時等の取り扱いに注意することでボルトの品質確保に努め、現場予備試験によっ て工場から現場に移動したボルトの品質を確認している.締付け作業要領では「接合面」「予備締め」「締 付け順序」「マーキング」等によりボルト締付けの品質を確保し、検査によって確認する流れとなって いる.

六角ボルトとめっきボルトも同様の流れであるが、以下についてはすでに実態と関連基準に乖離があると考えられる.

めっきボルト については、関連基準に記載のないボルト径の 5 倍以下の長さのボルトでも締付け日 ごとに予備試験を実施いる例が多く、その必要性や内容について検証する必要がある.また、ナット回 転法の予備締めの管理基準として道示¹⁾の「接触面の肌隙がなくなる程度にトルクレンチで締付けた状 態又は組立用スパナで力いっぱい締付けた状態」で管理することは難しく、定量的な管理基準値である 鉄道標準⁴⁾の「M20, M22:約 150N·m, M24:200N·m」が各施工計画書に記載されていることから、管理基 準の表現方法についても検討する必要があると考えられる.

道示¹⁾の付録の記述(表 5-3-1)に関して,六角ボルトでは,最初の現場予備試験から,供試ボルト本数が5本となっており,これは第3章の現場予備試験(F10T,W)のトルク係数値および標準偏差の結果から高い品質が確認されており,10本から20本程度の供試ボルトは必要なくなったと考えられる.

	道示 ¹⁾	道示 ¹⁾ 付録2-4	施工便覧 ²⁾
トルシア ボルト	3)締付けボルト軸力 iii)トルシア形高カボルトの常温時 (10℃ ~ 30℃)の締付けボルト軸 力は,一つの製造ロットから5組の 供試セットを無作為に抽出して試 験を行った場合の平均値が,表- 20.9.4に示すボルト軸力の範囲に 入らなければならない。	5.2 現場予備試験 (1)現場予備試験は、その日に使用 するセットの全製造ロットのうち、軸 力計にかかる首下長さの1つの製 造ロットから5組の供試セットを無作 為に抽出して行うのを標準とする。	道示(H24)を引用(左の道示欄と 同じ)
トルク法 六角ボル ト	1)ボルトの締付け ii)ボルトの締付けをトルク法によっ て行う場合には,締付けボルト軸 力が各ボルトに均一に導入される よう締付けトルクを調整する。	5.4 締付け機の調整 (2)締付け機の調整にあたっては、 その日に使用する一施エロットの 中から、軸力計にかかる首下長さの ボルト5本以上を使用することを標 準とした。現場において初めて締 付け機を使用する場合には10本 から20本程度の供試ボルトによる 調整を行い、2日日以降は供試ボ ルトの数を少なくして調整値がず れていないかどうかを確認する方 法をとればよい。	供試ボルトは,その日に施工する 予定の同一施工ロットごとに,無作 為に5本以上抽出する。

表 5-3-1 関連基準の供試ボルトの本数に関する記載項目

参考文献

- 1) 日本道路協会:道路橋示方書·同解説-II 鋼橋·鋼部材編,2017.11.
- 2) 日本道路協会:鋼道路橋施工便覧, 2015.3.
- 3) 国土交通省:土木工事共通仕様書平成 30 年版, 2018.4
- 4)鉄道総合技術研究所:鉄道構造物等設計標準・同解説(鋼・合成構造物), 2009.7.
- 5) 日本道路協会:道路橋示方書·同解説 II 鋼橋編,2012.3.

6. 作業効率化へ向けた方策案

本部会における検討成果を踏まえ,鋼橋の高力ボルト継手における施工管理基準に対して以下の2項 目の提案を行う.

・トルシア形高力ボルト(S10T)における現場予備試験の実施頻度の見直し

・高力六角ボルト(F10T)における締付け完了後の検査方法の見直し

6-1 トルシア形高力ボルトにおける現場予備試験の実施頻度の見直し

6-1-1 はじめに

トルシア形高力ボルトでは、締付け機械による締付けトルクの制御機能をもたないため、ボルトの性 能により締付け軸力が左右される.このため、工場出荷時から現場施工時まで、その性能が保持されて いることの確認が規定されており、ボルト締付け作業前に使用するボルトの性能を確認する現場予備試 験が実施されている.一方、現場予備試験では、試験に用いる検査機器の制約により全ての首下長さの ボルトに対して試験を行うことが困難である.このため、使用ボルトと同じ製造会社から同一時期に現 場へ搬入され、試験可能な首下長さのボルトで代表して締付け試験を実施して使用ボルトの性能を確認 している.一般には、構造物で使用するボルトの他に、キャリブレーション用として現場予備試験で使 用するボルトが注文されており、現場予備試験におけるボルトの性能確認も、1 種類の首下長さのボル トで実施されるため限定的なものとなっている.

6-1-2 本部会における検討成果

3章では、鋼橋の高力ボルト継手において、使用頻度の高いトルシア形高力ボルト(呼び径 M22)の 導入軸力および機械的性質を把握することを目的に、高力ボルトの検査証明書、製品出荷前の立会い試 験、および現場予備試験のデータを収集し調査した.製品出荷前の立会い試験および現場予備試験デー タの調査により、以下の結果が確認された.

(1) 製品出荷前の立会い試験

図 6-1-1 に製品出荷前の立会い試験データの集計結果を示す. 収集したデータ数は 376 である. 図 6-1-1 (a) は収集したデータにおける試験ボルトの首下長さの頻度, (b) は各試験ボルトにおいて計測された締付けボルト軸力の頻度, (c) は試験の合否判定となる 5 本の試験ボルトにおける締付けボルト軸 カの平均値の頻度,および(d) は締付けボルト軸力の平均値と試験ボルトの首下長さとの関係で整理したものである.

今回の調査の範囲では、各試験ボルトの締付けボルト軸力において常温時の規定の上限値および下限 値を示すものが数データ確認されたものの、5本の締付けボルト軸力の平均値は全て常温時の規定範囲 内にある.最近のデータによる調査において、規定値の範囲を超えるデータのばらつきがないことから、 現在製造されているトルシア形高力ボルトの品質に信頼性があるものと考えられる.

(2) 現場予備試験

現場予備試験データを,図 6-1-2 では各試験ボルトの締付けボルト軸力の頻度で,図 6-1-3 では試験の合否判定となる 5 本の試験ボルトにおける締付けボルト軸力の平均値の頻度で整理している.図 6-1-2 および図 6-1-3 では,試験時の気温を常温時(10~30℃),低温時(9℃以下),および高温時(31℃ 以上)に分けて示している.収集したデータ数は S10T において 773 でその内訳は,常温時 516,低温時 195,および高温時 62, S10TW においては総数量 259 でその内訳は常温時 198,低温時 39,高温時 22 の気温の内訳となっているが,ボルトの首下長さは 80mm の1 種類のみである.

今回の調査範囲では、締付けボルト軸力の分布は試験時の気温により異なり、低温時では締付けボルト軸力は低めに、高温時では高めに分布することが確認された.この結果より、トルシア形高力ボルトの締付けボルト軸力は、締付け時の気温により変動するもと考えられる.

図 6-1-2 現場予備試験データの集計結果(各試験ボルトの締付けボルト軸力)

図 6-1-3 現場予備試験データの集計結果(締付けボルト軸力の平均値)

6-1-3 施工管理基準に対する提案

製品出荷前の立会い試験データの調査により,現在製造されているトルシア形高力ボルトの品質の信 頼性が,現場予備試験データの調査により,トルシア形高力ボルトの締付けボルト軸力は締付け時の気 温の影響を受けることが確認された.この本部会での検討結果を踏まえて,トルシア形高力ボルトの締 付け作業を行う日に毎回実施している現場予備試験の頻度を以下のように見直せるのではないかと考 察する.

(1) 提案内容

・常温時(10~30℃)においては1週間に1回の頻度で実施する.

・低温時(9℃以下)および高温時(31℃以上)の気温でトルシア形高力ボルトの締付けを行う場合には、その作業日毎に現場予備試験を実施する.

(2) 前提条件

・工場出荷時の品質が現場施工時まで保たれるよう現場において適切に保管する.

・高力ボルトの保管期間については、今回、本部会で検討を行っていないため、鋼道路橋施工便覧および鉄道標準に記述されている6ヶ月を上限とする.

6-2 高力六角ボルト(F10T)における締付け完了後の検査方法の見直し

6-2-1 はじめに

高力六角ボルトを用いた継手では、高力ボルトの締付け完了後、各ボルト群の10%のボルト本数に対 してトルクレンチによって締付け検査を実施することが規定されている.しかしながら、トルクレンチ を用いた作業であるため、足場の条件や作業空間によっては、全ての継手において検査が実施できると は限らない.また、その検査の方法は、検査ボルトをトルクレンチにより増締めし、ナットが回り始め た時のトルク値を締付けトルクとして記録するが、これにはある程度の経験が必要であるとともに、作 業者によるばらつきを伴う.

6-2-2 本部会における検討成果

Ⅱ 編では、ナットの回転量とボルト軸力の関係について調査している. M22 および M24 のボルトに対して、それぞれ3種類のボルト長さについて試験を実施しており、図 6-2-1 に示すように、スナッグタイト後におけるナットの回転量とボルト軸力の間には、ナットの回転角度が 90° または 120° 付近までは両者の間に線形的な関係があることを示している. さらに、Ⅱ 編では F10T にナット回転法を適用した場合のナット回転量について、リラクセーションの影響も考慮して表 6-2-1 に示すナット回転量を提案している.

図 6-2-1 ナットの回転量とボルト軸力の関係

at a 1 strat labor	ボルト径					
ホノレト新国の行行	M	22	M24			
ボルト長	≦4.1d	\leq 5.0d	\leq 4.2d	\leq 5.0d		
一次締め (トルク法)	150Nm	150Nm	200Nm	200Nm		
本締め (ナット回転法)	90度	105度	85度	90度		

表 6-2-1 提案するナットの回転量

6-2-3 施工管理基準に対する提案

Ⅱ編のナット回転法適用の提案は、4章で示したようにトルク法による締付け法と比較して現場予備 試験や締付け後作業等の工程がないため、最も作業項目が少ない施工方法である.Ⅱ編の検討結果を踏 まえて、六角高力ボルトの締付け完了後の検査を以下のように見直せるのではないかと考察する.

(1) 提案内容

- ・六角高力ボルトの締付けは、これまでのトルク調整型の締付け機械ではなく、ナット回転角法用の 締付け機械により行う。
- ・一次締め後に行われるマーキングにより、本締め後のナットの回転角度を確認することにより、六角高力ボルトの締付け検査を実施する.
- ・これまで各ボルト群の 10%のボルト本数に対して実施してきたトルクレンチによる締付け検査を廃止する.

(2) 前提条件

・高力ボルトの一次締めにおいて接触面に肌隙のない状態(スナッグタイト)とする必要があり,一 次締めの管理方法が重要となる.今後の検討課題も含めて詳細についてはⅡ編を参照されたい.

7. まとめ

ボルト施工に関する検討 WG では,施工基準の調査,高力ボルトの統計調査,施工性の調査,施工計 画書の調査の4つの調査を実施した.

- (1)施工基準の調査では、道路橋の施工基準の変遷に加え、鉄道橋および建築分野も含めた施工基準についても比較を行った.ボルト施工に関する基準は昭和48年の道路橋示方書に登場し、昭和59年に高力ボルトに関する要領・規格集としてまとめられて以降は大きな変更がなされていないこと、道路橋、鉄道橋、建築分野ではわずかながら基準値が違う場合があることを確認した.
- (2) 高力ボルトの統計調査では、近年施工したトルシア形高力ボルト、六角高力ボルト、溶融亜鉛めっ き高力ボルトにおいて、製品検査証明書、工場出荷時の立会い試験、架設現場での現場予備試験結果 をまとめた.トルシア形高力ボルトでは締付け機構において温度依存性の影響があることを確認した. 各ボルトが高い品質であることをあらためて確認した.
- (3) 施工性の調査では、施工現場でのボルトの締付け作業に関する時間計測を行い、トルシア形高力ボ ルトと六角高力ボルトの施工時間の比較を行った.トルシア形高力ボルトのピンテール破断跡の処理 に時間を要することを確認した.
- (4)施工計画書の調査では、施工計画書の内容を調査し、関係基準と実際の作業との違いについて確認した.多くの工事で使用されるトルシア形高力ボルトは、基準に準拠して施工がなされていることを確認した.一方で、溶融亜鉛めっき高力ボルトの1次締めは定量的なトルク値で管理していること、基準に記載のない予備試験を実施していること.六角高力ボルトの予備試験では、初日から5本の供試ボルトで締付け機の調整が可能であることを確認した.
- (5) トルシア形高力ボルトの予備試験,および六角高力ボルトの検査方法に関して,作業効率化に向けた方策案ついて示した.トルシア形高力ボルトの予備試験については,ボルトの高い品質を根拠として常温(10℃~30℃)の場合は試験の頻度を緩和する提案をした.六角高力ボルトのトルク確認検査では,4章で示したボルト施工の作業項目の少なさからⅡ編で検討したナット回転角法の適用について提案した.

Ⅱ.ナット回転法の適用に関する検討WG

F10T へのナット回転法適用に向けた検討

ナット回転法の適用に関する検討WGメンバー

WGリーダー	白旗	弘実	東京都市大学
部会員	藤野	大地	川田工業 (株)
11	矢野	将太	川田テクノシステム (株)
]]	宮井	大輔	(株) 横河ブリッジ

ナット回転法の適用に関する検討WG 目次

1.	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	I I−1−	1
2.	施工基準の調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	п_2−	1
	2-1 高力ボルトの締付け・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	п−2−	1
	2-2 高力ボルトナット回転法に関する調査対象・・・・・・・・・・・・・・・・・・・・・	ш−2−	2
	2-3 高力ボルトナット回転法に関する規定・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ш−2−	2
	2-4 ナット回転法の既往研究	ш−2−	6
	2-5 高力ボルト遅れ破壊に関する既往研究	Ш−2−	6
0		πо	1
J.	ステックダイト試験 ······	ш-3-	1
		ш-3-	1
		ш-3-	1
	3-2-1 試験体の使用材料および形状・寸法および種類	Ш-3- то	1
	3-2-2	Ш-3-	2
	3-2-3 ホルト軸刀の計測	Ш-3-	3
		Ш-3-	3
	3-4 試験結果	Ш —3—	5
4.	軸力導入試験およびリラクセーション試験 ・・・・・・・・・・・・・・・・・・・・・・・・	ш −4−	1
	4-1 目的	∏ –4–	1
	4-2 試験体 ·····	Ш−4−	1
	4-2-1 試験体の使用材料および形状・寸法・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ш−4−	1
	4-2-2 試験体の種類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ш−4−	2
	4-2-3 塗装膜厚測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ш−4−	3
	4-2-4 ボルト軸力の計測・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ш−4−	4
	4-2-5 ボルトの締付け作業・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	∏-4-	4
	4-3 軸力導入試験	∏-4-	5
	4-3-1 試験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	∏ –4–	5
	4-3-2 試験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	∏ –4–	5
	4-4 リラクセーション試験 ・・・・・	∏ –4–	6
	4-4-1 試験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	∏ –4–	6
	4-4-2 試験による軸力残存率の結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	∏ –4–	6
	4-5 F10T でのナット回転量の提案・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	∏ –4–	8

5. すべり耐力試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	п_–5–	1
5-1 目的 · · · · · · · · · · · · · · · · · ·	п −5−	1
5-2 試験体	п −5−	1
5-2-1 試験体の使用材料および形状・寸法・・・・・・・・・・・・・・・・・・・・・・	п −5−	1
5-2-2 試験体の種類および接触面の表面処理・・・・・・・・・・・・・・・・・・・・・・・・・	п −5−	2
5-3 試験概要 ••••••••••••••••••••••••••••••••••••	п −5−	2
5-3-1 ボルトの締付けおよびひずみ計測・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	п −5−	2
5-3-2 リラクセーション試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ш −5-	3
5-3-3 すべり耐力試験・・・・・	Ш −5-	3
5-4 試験結果	Ш −5-	4
5-4-1 ボルト軸力計測結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ш −5-	4
5-4-2 すべり係数算出結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ш −5-	4
5-4-3 すべり係数に及ぼす導入軸力,膜厚の影響・・・・・・・・・・・・・・・・・・・・	п −5−	5
5-4-4 すべり耐力試験後の接触面の観察・・・・・・・・・・・・・・・・・・・・・・・・・	п −5−	6
6. 長期リラクセーション試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ш −6−	1
6-1 試験目的	Ш−6-	1
6−2 試験体および軸力導入試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ш−6-	1
6-3 軸力導入試験結果 ••••••••••••••••••••••••••••••••••••	Ш−6-	5
6−4 リラクセーション試験結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ш −6−	6
6-4-1 締め付け直後のリラクセーション・・・・・・・・・・・・・・・・・・・・・・・	Ш −6−	6
6-4-2 締め付け1か月のリラクセーション・・・・・・・・・・・・・・・・・・・・・・	Ш −6−	6
6-4-3 締め付け1年間のリラクセーション・・・・・・・・・・・・・・・・・・・・・・	Ш −6−	7
6-5 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ш −6−	10
7. まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ш −7−	1

巻末付録:既往研究概要

1. はじめに

道路橋示方書¹⁾(以下,道示)および鉄道構造物等設計標準²⁾(以下,鉄道標準)おいて,高力ボル ト摩擦接合継手におけるボルト締付け法は、トルク法、ナット回転法および耐力点法が示されている. 現在,耐力点法を用いることはほとんどなく、一般にトルク法が適用されるが、防食法に金属溶射を適 用する場合には、溶融亜鉛めっきボルト F8T(以下,めっきボルト)を使用するので、その際、ナット 回転法が適用される.これは、めっきボルトの締付け作業において、ボルトやナットに付着した亜鉛の 膜厚のばらつき等の影響で、導入軸力にばらつきが生じ、また、リラクセーションによる軸力低下が大 きいことなどからトルク法を適用せず、図1-1-1に示すように、導入軸力が高いナット回転法を用いる³⁾.

道示および鉄道標準において, ナット回転法を用いる場合, ナット回転角は 120°±30°(L≦5d(L: ボルト長さ, d: ボルト径))を規定している. ただし, これはブラスト処理されためっき面を対象とし た規定である. これは, 接触面によってリラクセーションによる軸力低下特性が異なるからであり, 適 切なボルト軸力が期待できるナット回転角は接触面によって異なると考えられる.

現在,鋼橋の建設工事では,使用ボルトはトルシア形ボルト S10T を使用しているケースが最も多い. 理由としては作業効率がよいと考えられているからであるが,日々,締付け作業前に5本のボルト軸力 の導入軸力の確認作業や,締付け後は,全数ピンテール破断面のグラインダー処理作業を行っているの も事実である.一方,ナット回転法は,機械締めの図1-1-2 に示すような専用レンチで行い,締付け精 度も高く,さらに,日々の締付けの前作業や締付け後の作業もなく,ナット回転法を適用すれば作業効 率が向上すると考えられる.ただし,道示や鉄道標準では,ナット回転法の適用はF8T のみであり,強 度の高い F10T での適用は認められていない.これは,ナット回転法での締付けは,導入軸力が高くな り,遅れ破壊を懸念しているからである.道示ではボルト規定が初めて示された昭和48 年度版から変 更されていない.

F10T のナット回転法の適用に向けた検討は,昭和 41 年から日本鋼構造協会(JSSC)の接合小委員会で 行われた⁴⁾.ここでは,ナット回転角は 180°が提案され,また,遅れ破壊に関しては,通常の使用条 件であれば生じる可能性は少ないとし,適用事例を増やして一般化させることがよいとされた.その後, 締付け作業および施工検査の簡素化を図ることを目的とし,実構造物での適用に関する検討も行われ, ナット回転角 180°で実施工が行われた.また,適用された当時の接触面は,黒皮を除去した粗面状態 であり,現在の主流である厚膜型無機ジンクリッチペイント(以下,無機ジンク)を施した接触面で F10T を適用した適用事例はなく,また,その適用性は不明である.

ナット回転法の施工の際には,鉄道標準では 150N・m(M22 の場合)といった一次締めつけトルク値の 規定がある一方で,道示では「接触面の肌隙がなくなる程度にトルクレンチで締めた状態又は組み立て 用スパナで力いっぱい締めた状態」から回転角を与える記述となっている.

本研究は、F10Tを用いナット回転法でボルト締付けを行った高力ボルト摩擦接合接手の適用に向けた 基礎データを取得することを目的に行った実験的研究である.本実験では、始めにスナッグタイト試験 を行った.つまり、組み立て工具で力いっぱい締めた状態がどれだけの軸力導入となるのかを調べ、試 験で適用可能か検討した.その後、F10Tを用い無機ジンクを施した試験体を作成し、ボルト径、ボルト 長およびナット回転角をパラメータとした導入軸力試験およびリラクセーション試験を行い、適切なボ ルト軸力、すなわち、ボルトねじ部が降伏域に入らないでリラクセーション後も設計ボルト軸力を満足 できるナット回転角を提案した.次に、提案したナット回転角ですべり耐力試験体を作成し、すべり耐 カ試験を実施した.これらの結果から,提案したナット回転角の妥当性を検証し,F10Tのナット回転法の適用に向けた検討を行った.

図 1-1-1 ボルト軸カとナット回転角の関係および施工法による締付け軸カ

図 1-1-2 電動レンチ

参考文献

- 1) 日本道路協会:道路橋示方書·同解説-II 鋼橋·鋼部材編, 2017.11.
- 2) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説(鋼·合成構造物), 2009.7.
- 3) 西川和廣, 高岡司郎, 菅原一昌:高力ボルト締付け工法一耐力点法一, 橋梁と基礎, Vol. 24, No. 7, pp. 35-43, 1990.
- 4) 田島二郎,青木博文,田中淳夫,小林昌一,北後寿:ナット回転法の提案,JSSC 協会誌, Vol. 9, No. 89, pp17-31, 1973. 5.
- 5) 板垣秀克, 和泉公比古:回転法のF10Tへの適用,首都高技報, No. 7, pp136-139, 1975.3.
- 6) 和泉公比古,板垣秀克:回転法のF10Tへの適用(その2),首都高技報,No. 9, pp136-138, 1977.3.
- 7) 大貫一生: F10T ボルトの回転法による施工, 首都高技報, No. 9, pp130-133, 1977.3.
- 8) 土木学会:高力ボルト摩擦接合継手の設計・施工・維持管理指針(案),2006.12.
- 9) 南邦明, 遠藤輝好, 小峰翔一, 吉岡夏樹, 宮井大輔, 澁谷敦, 内田大介: トルシア形ボルト S10T (M22) の導入軸力および機械的性質の統計調査, 土木学会論文集 A1, Vol. 74, No. 2, pp. 280-289, 2018. 8.
- 10)橋田芳朗,橋本郁郎,今村壮宏,山下恭敬,松田哲夫,山口弘信:38年供用後のHTBF11Tの遅れ破 壊特性,土木学会第67回年次学術講演会,I-344,2014.

2. 施工基準の調査

2-1 高力ボルトの締付け

図 2-1-1 施工手順

2-2 高力ボルトナット回転法に関する調査対象

国内外の高力ボルト摩擦接合継手に関する規準類の調査・比較を行った.なお、比較においては、道路橋示方書(2017年)を基準とした.

調査対象とした国内外の設計規準類は、以下の通りである.

- ・ 日本道路協会:道路橋示方書・同解説Ⅱ鋼橋編・鋼部材編,2017年
- 鉄道総合技術研究所:鉄道構造物等設計標準・同解説,鋼・合成構造物,2009年
- 日本建築学会:鋼構造設計規準(SI 単位版), 2002 年
- · 日本建築学会:鋼構造接合部設計指針, 2018年
- AASHTO:LRFD Bridge Construction Specifications, 2010年

以後、これらの規準類を表 2-2-1 に示すように略記する.

日本道路協会:道路橋示方書・同解説(Ⅱ鋼橋編・鋼部材編), 2017 年	道示
鉄道総合技術研究所:鉄道構造物等設計標準・同解説,鋼・合成構造物,2009年	鉄道標準
日本建築学会:鋼構造設計規準(SI 単位版),2002 年	鋼規準
日本建築学会:鋼構造接合部設計指針,2018 年	鋼接合指針
AASHTO:LRFD Bridge Construction Specifications, 2010 年	AASHTO
土木学会 鋼・合成構造標準示方書	土木学会

表 2-2-1 調査した設計規準とその略称

2-3 高力ボルトナット回転法に関する規定

ナット回転法では、各基準とも肌すきがない程度にトルクレンチで締め付けた状態、あるいは、組み 立て用スパナでカー杯締め付けた状態から規定の回転量でボルトを締め付けることとしている。各基準 で規定されている回転量を表 2-3-1 に示す.いずれの基準においても、ボルトの長さに応じた回転量を 規定しており、国内基準に比べて海外基準は、ボルト長さに対する回転量をより細かく規定している. AASHTO ではボルト頭またはナットと接触面との間に傾斜が生じている場合についても規定を設けてい る.

各基準で示されているボルトの締め付け順序を表 2-3-2 に示す. 道示では,継手部のボルト軸力が不均一であると,すべり耐力が減少する恐れがあることから,ボルト群でできるだけ均等に締め付けられるようにボルトの締め付け順序を規定している. このような締め付け順序は,鉄道標準および AASHTO でも同様である.

表 2-3-1 ボルトの締付け方法

	ボルト長	回転量			許容誤差
道示	径の5倍以下		120°		±30°
(2017 年)	径の5倍より大きい	試	験により決	:定	_
鉄道標準 (2009 年)	_	120°			±30°
鋼規準	径の5倍以下	120	120° (M12 は 60°)		
(2002 年)	径の5倍より大きい	特記による			
鋼接合指針 (2018 年)	_	_			_
		A	В	C	
AASHTO	径の4倍以下	120°	180°	240°	
(2010 年)	径の4倍を超え8倍以下	180° 240° 300°		300°	
	径の8倍を超え12倍以下	240°	300°	360°	

※ A:両側の面がボルト軸と直角な場合

※ B:片側面がボルト軸と直角、もう一方が1:20以下の傾斜を持つ面

※ C: 両側の面が1:20以下の傾斜を持つもの

表 2-3-2 ボルト締め付け順序の比較

道示	ボルトの締付けは、連結板の中央のボルトから順次端部のボルトに向かって行い、予備締めと本
(2017 年)	締めの2度締めを行うこととする.
鉄道標準	ボルト群の締付けは、中央部から順次端部のボルトに向かって行うこと.
(2009 年)	はじめは, 所要トルクの 60%程度に全ボルトを締付けて 2 回目の締付けで所定トルクを与え, 材
	片の密着に注意し, 継手端部のボルトを最後に締付けること.
鋼規準	該当なし
(2002 年)	
鋼接合指針	該当なし
(2018 年)	
AASHTO	ボルトの締付けは,継手の最も剛な部分から自由端に向かって順次行う.
(2010 年)	

ボルトの規格について,代表的なボルトを表 2-3-3 に示す. 道示を含む国内の設計基準類はメート ル並目ねじを使用しており、対して AASHTO などの国外の設計基準ではユニファイ並目ねじを使用して いる場合が多い. このことから,締付けにおける回転量が同値の場合でも,採用されるボルトの規格の 違いからボルトの伸び量は異なり,導入される軸力に差が生じる.

規格	ねじの呼び	基本径	ねじ山数 n	ピッチ
			(1 インチあたり)	P mm
メートル	M20	20 mm		2. 5
並目ねじ	M22	22 mm		2. 5
(JIS B 0205-1997)	M24	24 mm		3. 0
ユニファイ	3/4	0.75 inch (=19.1mm)	10	2. 5400
並目ねじ	7/8	0.875 inch (=22.2mm)	9	2. 8222
(JIS B 0206-1973)	1	1.0 inch (=25.4mm)	8	3. 1750

表 2-3-3 ボルトの規格

各基準で規定される鋼板表面処理の種類とそれに対応するすべり係数を表 2-3-4 に示す. すべり係数 は接触面の表面処理状態によって異なることが知られている. しかし,道示では接触面の表面処理の状 態を 2 種類に分割するに留めており,一方,鋼接合指針や諸外国の設計基準では,接触面処理状態を細 分し,それに応じて,すべり係数の値を変えている. 例えば,鋼接合指針では,鋼板表面処理状態を 7 つに分け,0.23~0.45のすべり係数を規定している. 道示の規定では,状況に応じた接触面の処理およ びすべり係数の選択ができず,また同じ処理面であってもすべり係数の値が海外基準よりも小さい場合 がある.

表 2-3-4 すべり係数

(a) 道路橋示方書(2017年)

すべり係数	接触面の処理または状況
0. 40	接触面を塗装しない場合
0. 45	接触面に無機ジンクリッチペイントを塗装

(b) 鉄道構造物等設計標準(2009年)

すべり係数	接触面の処理または状況
0. 40	さび・黒皮等を除去した表面
0. 40	厚膜型無機ジンクリッチペイントを塗装

(c) 鋼構造設計規準(2002年)

すべり係数	接触面の処理または状況
0. 45	黒皮を除去した後、屋外に自然放置して発生させた赤錆状態
0. 45	ショットブラストまたはグリットブラスト処理(50μmRy以上)

(旧 JIS 規格では Rz)

(d) 鋼構造接合部設計指針(2018年)

すべり係数	表面処理方法	鋼材の種類			
0. 45	浮きさびを除去した赤錆状態	構造用鋼材			
	ブラスト処理面(50μmRz以上)				
	無機ジンクリッチ塗料塗装面				
	(塗膜厚 45~75μmRz 程度)				
0. 23	第3種ケレン処理後の黒皮面				
0. 40	ブラスト処理面(50μmRz以上)	溶融亜鉛めっき構造用鋼材			
0. 45	無機ステンレス粉末入り塗料塗装面	建築構造用ステンレス鋼材			
	(塗膜厚 75μmRz 程度)				
	プラズマ溶射処理面 (塗膜厚 100μmRz 程度)				
0. 23	上記のいずれかの処理による	板厚 6mm 未満の鋼材			

(e) AASHTO (2010 年)

すべり係数	接触面の処理または状況					
0. 33	清浄な黒皮表面,もしくは,ブラスト処理後 ClassA のコーティング					
0. 50	未塗装のブラスト処理表面,もしくは,ブラスト処理後 ClassB のコーティング					
0. 33	溶融亜鉛メッキ後、ワイヤーブラッシングによる粗な面					

2-4 ナット回転法の既往研究

ナット回転法に関する既往の研究を調査した.調査した文献の概要は,巻末資料に収録する. ※ 参考文献:7)~10)

調査した文献では、具体的なナット回転角の提案等を述べてはいなかったが、捩り試験や室内促進試 験等の実験から F8T と変形性能や遅れ破壊性能が似ているため、ナット回転法による施工が適用できる 可能性があることが述べられている.また、ナット回転法による施工は、現場締付けをした場合と室内 における締付けの結果に差が小さいため、ボルトに導入される軸力の信頼性が十分にあることが述べら れている.

2-5 高力ボルトの遅れ破壊に関する既往研究

高力ボルトの遅れ破壊に関する既往の研究を調査した.調査した文献の概要は,巻末資料に収録する. ※ 参考文献:11)~17)

遅れ破壊は、材料・環境・応力の相互作用によって生じる一種の環境脆化であり、水素による材質劣 化の一形態と考えられている.このため、遅れ破壊は水の存在下で腐食反応の結果生じる水素により、 誘起されるもので、乾燥状態では使用されていれば遅れ破壊は生じないとされている.収集した文献に 記載される損傷事例の集計結果では、箱桁における損傷例が多く、これは箱内部に水が溜まることで高 温高湿条件となり腐食反応が生じやすいためであると述べられている.

また促進暴露試験では、締付けの際のナット回転角が 120°と 180°の供試体について、ナット回転 角が大きい方が初期破断日数は短くなり遅れ破壊が発生しやすく、最終的な遅れ破壊発生率も高くなる 傾向が認められている.ただし、鋼種の違いによる影響は大きく、例えば参考文献 15)の実験では、Y 鋼の場合において促進暴露期間 194 日で 25%の供試体で遅れ破壊 が生じたのに対して、Z 鋼の場合で は促進暴露期間 2355 日の時点でも一体も遅れ破壊が生じていないことを述べられている.

参考文献

- 1) 日本道路協会:道路橋示方書・同解説Ⅱ鋼橋編・鋼部材編, 2017.11.
- 2) 土木学会:高力ボルト摩擦接合継手の設計・施工・維持管理指針(案),2006.
- 3) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説,鋼·合成構造物,2009.7.
- 4) 日本建築学会:鋼構造設計規準(SI単位版), 2002.
- 5) 日本建築学会:鋼構造接合部設計指針, 2018.
- 6) AASHTO: LRFD Bridge Construction Specifications, 2010.
- 7) 板垣秀克, 和泉公比古: 回転法の F10T への適用, 首都高技報 No. 7, 1975.
- 8) 大貫一生: F10T ボルトのナット回転法による施工, 首都高技報 No.9, 1977.
- 9) 和泉公比古,板垣秀克:回転法のF10Tへの適用(その2),首都高技報 No.9, 1977.
- 10)田島二郎,青木博文,田中淳夫,小林昌一,北後寿:高力ボルト接合:ナット回転法の提案,JSSC 協会誌 No.9, 1973.
- 11) 中里福和: ボルトの遅れ破壊, 鉄と鋼 Vol. 88, 2002.
- 12) 松山晋作:橋梁における高力ボルトの遅れ破壊,鉄と鋼 Vol. 69, 1983.
- 13) 松岡和巳, 宇野暢芳, 秋山英二, 萩原行人, 原田宏明:高力ボルトの遅れ破壊に影響を及ぼす浸水 水素量の確率論的評価, 鋼構造論文集 第79号, 2013.
- 14) 平井敬二, 脇山広三, 宇野暢芳: 高力ボルトの遅れ破壊に関する実験的研究(その1限界拡散性水 素濃度法の提案), 日本建築学会構造系論文集 第490号, 1996.
- 15) 平井敬二, 脇山広三, 宇野暢芳, 宮川敏夫:高力ボルトの遅れ破壊に関する実験的研究(その2暴露破壊),日本建築学会構造系論文集 第555号, 2002.
- 16) 平井敬二, 宇野暢芳: 高力ボルトの遅れ破壊に関する実験的研究(その3 ボルトに侵入する拡散性 水素及びボルト張力), 日本建築学会構造系論文集 第560号, 2002.
- 17) 福井彰一:高力ボルトの遅れ破壊強度と熱処理,電気製鋼 第43巻,1972.
- 18)日本鋼構造協会:高力ボルト接合技術の現状と課題,2013.3.
- 19)日本橋梁建設協会:高力ボルト施工マニュアル, 2013.6.

3. スナッグタイト試験

3-1 目的

ナット回転法の施工の際には,鉄道標準¹⁾では150N・m(M22の場合)といった一次締付けトルク値の規 定がある一方で,道示²⁾では「接触面の肌隙がなくなる程度にトルクレンチで締めた状態又は組み立て 用スパナで力いっぱい締めた状態」から回転角を与える記述となっている.肌隙のない状態をスナッグ タイトというが,この道示で規定している状態が定量的なトルク量あるいはボルト軸力とどのような関 係になっているかの調査や報告は当部会の知る限りない.

本試験は, F10T を用いナット回転法でボルト締付けを行った高力ボルト摩擦接合接手の適用に向けた 基礎データを取得することを目的に行った.

3-2 試験体

本試験に用いた試験体を以下に示す.

3-2-1 試験体の使用材料および形状・寸法および種類

試験に用いた鋼材および高力ボルトの材料特性をそれぞれ表3-2-1および表3-2-2に示す.使用ボル トは六角ボルトF10T-M22であり、ボルト長は70,90および110mmの3種類である.表3-2-2のボルトの機 械的性質は3本のボルトの平均値である.試験体を図3-2-1に示す.表3-2-3に示すような連結板および 母板で3種類の組み合わせを用意し、それに応じたボルト長のボルトを締めた.表3-2-3のボルトサイ ズで示すdは、ボルトの呼び径であり、たとえば3.2dとは、首下長さ70mmが径の3.2倍であることを意 味している.図3-2-1に示すように、一つの試験体には3つのボルト孔があけられている.ボルトピッ チ(P)や縁端距離(e)は、標準試験片³⁾を参考に決定した.

	七回	柞		化	学成分	(%)				
鋼種	(wm)	耐力	引張強度	(中 ブド (0/)	C	c :	Ma	п	C	適用場所
	(11111)	(N/mm2)	(N/mm2)	1甲 い (%)	U	51	Mn	Ρ	2	
SM490YA	9	457	535	22	0.15	0.19	1.08	0.023	0.007	A1の母板・連結板, B2の連結板
SM490YA	12	482	537	22	0.14	0.18	1.10	0.016	0.003	A2の連結板, B1の母板
SM490YB	16	354	534	20	0.15	0.19	1.08	0.015	0.004	B1の母板
SM490YB	19	461	542	23	0.15	0.19	1.07	0.016	0.005	A3, B3の連結板
SM490YB	22	426	513	25	0.15	0.19	1.08	0.016	0.004	A2の母板

表 3-2-1 使用鋼材の機械的性質および化学成分(スナッグタイト試験)

	古林	ボルト					ナット	座金	1.2.5		
ギャータ	首下長さ	1 <i>別</i> 断面積		4号討	、験片		製		製品	製品	トルク 反粉症
ホルト住	(mm)	(mm^2)	耐力	引張強度	伸び	絞り	引張荷重	硬さ	硬さ	硬さ	(亚均值)
		(11111)	(N/mm^2)	(N/mm^2)	(%)	(%)	(kN)	(HRC)	(HRC)	(HRC)	(100)
	70		993	1050	18	69	328	32	30	40	0.13
M22	90	303	987	1052	18	69	323	32	29	40	0.13
	110		1024	1056	18	69	324	33	30	40	0.129

表 3-2-2 使用ボルトの機械的性質とトルク係数値(スナッグタイト試験)

表 3-2-3 試験体の板厚およびボルトの組合せ |試験| 板厚(mm) | ボルト

武歌	1次/子(ⅢⅢ)		ホルト
体名	母板(t)	連結板(ts)	サイズ
A1	9	9	M22-L70(3.2d)
A2	22	12	M22-L90(4.1d)
A3	32	19	M22-L110(5.0d)

図 3-2-1 スナッグタイト試験片

3-2-2 塗装膜厚測定

試験体には無機ジンクを塗装した. 膜厚測定結果を表 3-2-4 に示す. 測定位置は,図 3-2-2 に示すようにボルト孔周辺とし,測定数は,1つのボルト孔に対し,母板の両面および添接板の片面各 2 点とし,試験体一体あたり計 24 点測定した.1 点につき 5 回計測し,平均を取った.測定時期は,塗装作業後とした.

膜厚は75μmを設計厚さとしたが、計測値は77~98μmであり、厚めの結果となった.

表 3-2-3 スナッグタイト試験片の膜厚

⇒+ => /+	塗装膜厚(μm)						
武 駅 14 夕	ボ	교성					
	No.1 No.2 No.3						
A1	88	87	77	84			
A2	85	89	98	91			
A3	87	88	87	87			

導入軸力の評価を行うため、ボルト軸部にひずみゲージを取り付け、ボルト軸力を計測した.なお、 ボルト軸力の計測に際し、表 3-2-2 に示す 3 種のボルトそれぞれに対し、荷重とひずみの関係から換算 率を求めるキャリブレーション試験を実施し、ひずみからボルト軸力を算出するための換算率を求めた.

スナッグタイトの計測はボルト軸部に図 3-2-3 に示すように、2 枚のゲージを貼付し、それらのゲージ出力(ひずみ値)の平均値に換算率を乗じボルト軸力を算出した.ゲージ長は 5mm である.その際、ボルト軸部のひずみゲージの位置は、試験体として組み立てた際に、なるべく母材板厚中央となるようにした.

図 3-2-3 ひずみゲージの取り付け

3-3 実験方法

ボルトの締付けは、3社の橋梁製作会社の工場あるいは建設現場で行った.会社をここではA社,B 社、C社と呼ぶことにするが、日常的にボルト締付けを行っている作業員(以下,作業従事者)をA社 から2名,B社では3名,C社では6名の合計11名が締付け作業を行った.参考として、日常的にボル ト締付けを行っていない作業員(以下,非作業従事者)のデータも収集した.

ボルト締付け作業状況を図 3-3-1 から図 3-3-5 に示すが,高さ 70~100cm の机あるいは台に万力で試 験片を固定した.また,図 3-3-3 および図 3-3-4 に示す通り,試験体の設置方向を変えてデータを取得 した.最初のボルトを締める前にデータロガーのイニシャルを取ったのち,3本のボルトを連続的に締 めた.3本のボルトの締付け順序は決まりをもうけず任意とした.3本のボルトを締め終わってからデ ータロガーでひずみの記録を取った.

図 3-3-1 ボルト締付け時の状況(A 社その 1)

図 3-3-2 ボルト締付け時の状況(B 社その 2)

図 3-3-3 試験体設置状況 (B 社その 3: 鉛直)

図 3-3-4 試験体設置状況(B 社その 4:水平)

図 3-3-5 試験体設置状況(C 社その 5)

締付けにおいては,長さ 30~40cm のラチェット,レンチなどを用いて,各作業員が力いっぱいと感じるまで,つまり,これ以上自身の力でナットを回せないと判断したところまでとした.

これら一連の締付け作業を1人の作業員につき、3種類の試験片すべてのボルトを締付けるように同 時にローテーションしながら、何回か繰り返した.1社が終わった後に、試験体を他の会社に回送し、 次の一社で締付け試験を行い、最後の会社に回送するという流れで行った.3社ともに作業台の高さや 工具による極端な差がないようにした.人力であることからボルトや試験体が塑性域に達することはな いと判断し、再使用した.ただし、ゲージのひずみ値が不安定になった場合にはボルトを交換した.

前述した通り、日常的にボルト締付けを行っていない作業員についてのデータも取得できたが、作業 員によってバラつきが大きく、ここでは考慮しないこととした.また、締付け方向を変えたことによっ て導入軸力に有意な差が見られず、橋梁製作会社によっては1種類の締付け方向しかデータが取得でき なかったこともあり、締付け方向による影響はここでは考慮しないこととした.

最終的には,作業従事者としてA社108件,B社80件,C社53件の合計241件,非作業従事者としてA社208件,C社27件の締付けデータを得た.ただし,非作業従事者のデータは作業員によるバラつきが大きく,ここでは参考データとして取り扱う.

3-4 実験結果

ボルトの導入軸力を計算し,鉄道標準¹⁾などで規定されている値との比較を行った.ボルトの軸力お よびトルクの関係は次の式で表される.

$$N = \frac{T}{kd} \qquad (1)$$

ここに、Nはボルト軸力、Tはトルク、kはトルク係数、dはボルト呼び径である.使用したボルトの kとして表 3-2-2の値 0.129 または 0.130 を用いると、M22の規定値である 150N・m¹⁾に相当する軸力は 52kN と算出された.

まず,作業従事者の試験結果を示す.図3-4-1 はボルト軸力の頻度をボルト長ごとに示したものである.たとえばL70は、首下長さ70mmのボルトであることを意味している.ボルトの軸力は52kNを境とし、5kNの範囲でまとめた.図3-4-1より、ボルト軸力は47~52、52~57kNあたりをおおむねピークとした分布になっている.3種類のボルト軸力に対して、それぞれの平均と標準偏差を表3-4-1に示す.また、150N・mを上回る軸力となった割合を表3-4-2に示す.表3-4-2における計とは、ボルト長によらず軸力が52kNを上回った割合である.表3-4-1および表3-4-2より、平均値としては52kNを上回るものの個数としては半数程度であることがわかる.標準偏差は18kN程度であるが、ここでの実験では最大と最小の軸力の差は50kNであり、ボルト軸力は非常にばらついていることがわかる.なお、表3-4-1より各長さにおける軸力の平均値は52kNを2~3kN程度上回っていることを示しており、ボルトが長くなるにつれて軸力が減少傾向であることがわかるが、それほど顕著ではないことがわかる.軸力の標準偏差は、120mmで最大の18.7kN、90mmで最小の15.3kNとなったが、各長さによる差がそれほどないといえる.

図 3-4-1 スナッグタイト試験導入軸力分布(作業従事者)

ゴルト毎粨	L 括約 M22-L70		M22-L90		M22-L110	
ハルト推測	平均	標準偏差	平均	標準偏差	平均	標準偏差
軸力値(kN)	55.7	17.7	54.9	15.3	54.2	18.7

表 3-4-1 各ボルトに導入された軸力の平均および標準偏差

表 3-4-2 軸力 52kN(トルク 150N·m)を上回るボルトの割合(作業従事者)

ボルト種類	M22-L70	M22-L90	M22-L110
割合(%)	56.8	48.1	51.9

さらに, 締付け姿勢による違いを把握するため、鉛直および水平でのデータを記録した. 作業従事者の結果を図 3-4-2, 図 3-4-3 および表 3-4-3 ~表 3-4-6 に示す.

水平姿勢について,図 3-4-3 ではバラつきが大きいように見えるが,導入された軸力の平均値および 標準偏差については有意な差が見られなかった.軸力 52kN を上回るボルトの割合について,水平姿勢 における M22-L70 が突出する結果となった.ただし,水平姿勢のサンプル数が少なかったので参考とし て捉える.

図 3-4-2 スナッグタイト試験導入軸力分布(作業従事者,鉛直)

図 3-4-3 スナッグタイト試験導入軸力分布(作業従事者,水平)

表 3-4-3 各ボルトに導入された軸力の平均および標準偏差(作業従事者,鉛直)

ゴルト毎粨	M22-L70		M22-L90		M22-L110	
ハアは対	平均	標準偏差	平均	標準偏差	平均	標準偏差
軸力値(kN)	54.5	19.5	54.4	16.3	55.8	19.5

表 3-4-4 各ボルトに導入された軸力の平均および標準偏差(作業従事者,水平)

ゴルト毎海	M22-L70		M22-L90		M22-L110	
ハアア推測	平均	標準偏差	平均	標準偏差	平均	標準偏差
軸力值(kN)	59.8	8.2	56.5	11.1	48.7	14.1

表 3-4-5 軸力 52kN(トルク 150N・m)を上回るボルトの割合(作業従事者,鉛直)

ボルト種類	M22-L70	M22-L90	M22-L110
割合(%)	49.2	46.0	52.5

表 3-4-6 軸力 52kN(トルク 150N・m)を上回るボルトの割合(作業従事者,水平)

ボルト種類	M22-L70	M22-L90	M22-L110
割合(%)	83.3	55.6	50.0

続いて、参考として非作業従事者の結果を図3-4-4~図3-4-6および表 3-4-7~表3-4-12に示す.

図 3-4-1 と図 3-4-4 を比較すると、相対的に作業従事者よりも非作業従事者の方が低い導入軸力の頻度が多いことがわかる.前述した通り、非作業従事者は個々のデータのバラつきは大きかったが、導入軸力の平均値や標準偏差は作業従事者と比べて有意な差が見られなかった.

図 3-4-4 スナッグタイト試験導入軸力分布(非作業従事者)

図 3-4-5 スナッグタイト試験導入軸力分布(非作業従事者,鉛直)

図 3-4-6 スナッグタイト試験導入軸力分布(非作業従事者,水平)

表 3-4-7 各ボルトに導入された軸力の平均および標準偏差(非作業従事者)

ゴルト毎海	M22-L70		M22-L90		M22-L110	
小ルト性親	平均	標準偏差	平均	標準偏差	平均	標準偏差
軸力值(kN)	54.9	19.2	46.9	14.1	52.2	14.6

表 3-4-8 各ボルトに導入された軸力の平均および標準偏差(非作業従事者,鉛直)

ゴルト毎海	M22-L70		M22-L90		M22-L110	
小ルト性親	平均	標準偏差	平均	標準偏差	平均	標準偏差
軸力値(kN)	51.1	20.4	50.5	12.9	50.0	16.9

表 3-4-9 各ボルトに導入された軸力の平均および標準偏差(非作業従事者,水平)

ゴルト毎粨	M22-L70		M22-L90		M22-L110	
小ルト性親	平均	標準偏差	平均	標準偏差	平均	標準偏差
軸力値(kN)	59.3	16.7	42.3	14.2	54.3	11.9

表 3-4-10 軸力 52kN(トルク 150N・m)を上回るボルトの割合(非作業従事者)

ボルト種類	M22-L70	M22-L90	M22-L110
割合(%)	52.6	36.3	50.0

表 3-4-11 軸力 52kN(トルク 150N・m)を上回るボルトの割合(非作業従事者,鉛直)

ボルト種類	M22-L70	M22-L90	M22-L110
割合(%)	42.9	45.4	71.7

表 3-4-12 軸力 52kN(トルク 150N・m)を上回るボルトの割合(非作業従事者,水平)

ボルト種類	M22-L70	M22-L90	M22-L110
割合(%)	63.9	25.0	75.0

以上より、いずれのパターンにおいても、1次締めで締付け量(トルク)の影響は大きいと考えられる. そこで、次章以降で行う実験では、1次締めを鉄道標準¹⁾の規定値で実施することとした.

参考文献

- 1)鉄道総合技術研究所:鉄道構造物等設計標準・同解説(鋼・合成構造物),2009.7
- 2) 日本道路協会:道路橋示方書·同解說-II 鋼橋·鋼部材編, 2017.11
- 3) 土木学会:高力ボルト摩擦接合継手の設計・施工・維持管理指針(案),2006.12

4. 軸力導入試験およびリラクセーション試験

4-1 目的

高力ボルト摩擦接合の締め付け方法においては、トルク法とナット回転法がある.トルク法ではトル ク係数値に依存しているため、わずかな変動を受けると軸力に影響を受けやすいという問題がある ^{1),2)}. ナット回転法は F8T でのみ適用できるが、降伏域までボルト軸力を導入することが許されていることに よる. F10T は降伏域に入ると遅れ破壊の可能性が高くなるが、降伏域に達しないナット回転角がわか れば、F8T の使用とともに施工性などを高めることが期待できる.

ここでは F10T のナット回転法の提案を目的として、ボルトの径や長さ、ナット回転角をパラメータ として軸力導入試験およびリラクセーション試験を行った.

4-2 試験体

4-2-1 試験体の使用材料および形状・寸法

本試験で使用した鋼材および高力ボルトの材料特性をそれぞれ表 4-2-1 および表 4-2-2 に示す. 試験 体の母板および連結板には板厚9~36mmのSM490Yを使用した.使用ボルトは,六角ボルトF10T(M22, M24) とし、ボルト長は70~120mmを用いた.

図 4-2-1 に試験体形状を示す. 試験体は、ボルト径により2種類を使用し、ボルト長により、適用板厚を選定した. 1 つは M22 に対するものであり、もう1 つは M24 に対するものである. 孔径は、各試験体ともに標準孔を用いた. ボルトピッチ(P)や縁端距離(e)は、標準試験片³⁾を参考に決定した.

			機械的性質	ЧЩ,		亻	公学成分	(%)						
鋼種	板厚	耐力	引張強度	(中て)(0())	C	c.	м	D	c	適用場所				
	(mm)	(N/mm^2)	(N/mm^2)	1甲♥(%)	C	S1	Mn	Р	8					
SM490YA	9	457	535	22	0.15	0.19	1.08	0.023	0.007	A1の母板・連結板,B2の連結板				
SM490YA	12	482	537	22	0.14	0.18	1.10	0.016	0.003	A2の連結板, B1の母板				
SM490YB	16	354	534	20	0.15	0.19	1.08	0.015	0.004	B1の母板				
SM490YB	19	461	542	23	0.15	0.19	1.07	0.016	0.005	A3, B3の連結板				
SM490YB	22	426	513	25	0.15	0.19	1.08	0.016	0.004	A2の母板				
SM490YB	25	426	513	25	0.15	0.19	1.08	0.016	0.004	B2の母板				
SM490YB	32	418	527	21	0.15	0.18	1.07	0.016	0.006	A3の母板				
SM490YB	36	443	535	25	0.15	0.19	1.12	0.016	0.005	B3の母板				

表 4-2-1 使用鋼材の機械的性質および化学成分

		有効			ボルト ケット 座金						1.0.4
ボルト径	首下長さ			4号試験	;片		製品	1	製品	製品	トルク
AND THE	(mm)	(mm^2)	耐力	引張強度	伸び	絞り	引張荷重	硬さ	硬さ	硬さ	(平均值)
		(11111)	(N/mm^2)	(N/mm^2)	(%)	(%)	(kN)	(HRC)	(HRC)	(HRC)	
	70		1025	1070	19	69	323	33	28	40	0.131
M22	90	303	1030	1071	19	69	330	33	27	40	0.131
	110		1030	1068	19	69	333	33	29	40	0.131
	75		1025	1070	20	66	372	33	26	39	0.136
M24	100	353	1033	1072	18	64	376	33	27	40	0.129
	120		1034	1070	20	66	377	33	27	40	0.131

表 4-2-2 使用ボルトの機械的性質とトルク係数値

図4-2-1 試験体形状

4-2-2 試験体の種類

試験体の種類を表 4-2-3 に示す. 試験体のパラメータは, ボルト径, ボルト長およびナット回転角と した. M22 および M24 の両者ともに 5.0d (d:ボルト径) までを対象とし, M22 で 3 種類のボルト長, M24 でも 3 種類のボルト長の合わせて 6 種類のボルトを用いた. これらのボルトに対し, ナット回転角を 75, 90, 120°の 3 角度で締付けることとした. 試験体は, 各ボルト径および首下長さのパターンで 3 体製 作することになり, 合わせて 18 体を試験に供した.

接触面処理は,素地調整(ブラスト処理(ISO Sa2 1/2))を行った後に,無機ジンクを標準膜厚 75 μ m 塗布した.

-					
⇒+ #>>	板厚	(mm)	- ¹ 1 1	ボルト約	締付け
武 缺 体名	母板 (t)	連結板 (ts)	ホルト サイズ	1次締め	本締め
A1-1			M22 I 70		75°
A1-2	9	9	(2.2d)		90°
A1-3			(3.2u)		120°
A2-1			M22 1 00		75°
A2-2	22	12	(4.1d)	150N • m	90°
A2-3			(4.1u)		120°
A3-1			M22 T 110		75°
A3-2	32	19	(5.0d)		90°
A3-3			(5.00)		120°
B1-1			M24 I 75		75°
B1-2	12	9	(2.14)		90°
B1-3			(3.10)		120°
B2-1			M24 T 100		75°
B2-2	25	16	(4.2d)	200N • m	90°
B2-3			(4.2d)		120°
B3-1			M24-I 120		75°
B3-2	36	19	(5.0d)		90°
B3-3]		(3.00)		120°

4-2-3 塗装膜厚測定

塗装面の膜厚測定は、電磁誘導式膜厚計を用いて行った.測定位置および測定点数は、スナッグタイト試験の試験体と同様である.

膜厚測定結果を表 4-2-4 に示している. 無機ジンクの設計膜厚は 75 μ m であるが, 計測値は 77~98 μ m であり, 若干厚めであった.

⇒膝休		塗装膜	厚(µm))
武 歌 仲 夕	ボ	ルト番	:号	亚齿
1	No.1	No.2	No.3	+13)
A1-1	88	87	77	84
A1-2	87	82	85	85
A1-3	95	87	92	91
A2-1	85	89	98	91
A2-2	94	83	80	86
A2-3	89	94	95	93
A3-1	87	88	87	87
A3-2	88	83	89	87
A3-3	80	89	90	86
B1-1	86	96	95	92
B1-2	98	90	83	90
B1-3	94	85	85	88
B2-1	94	87	94	92
B2-2	97	84	87	89
B2-3	88	99	98	95
B3-1	99	88	92	93
B3-2	84	89	87	87
B3-3	88	89	90	89

表 4-2-4 無機ジンク膜厚測定結果

4-2-4 ボルト軸力の計測

導入軸力およびリラクセーションの評価を行うため、スナッグタイト試験の試験体の際と同様に、ボ ルト軸部にひずみゲージを取り付け、ボルト軸力を計測した.

6 種のボルトそれぞれに対し、荷重とひずみの関係から換算率を求めるキャリブレーション試験(1 種類のボルトのつき3本のボルトを使用)を実施し、ひずみからボルト軸力を算出するための換算率を 求めた.

4-2-5 ボルトの締付け作業

軸力導入試験において用いたナット回転法によるボルトの締付け手順を図 4-2-2 に示す.作業は,一 次締めおよびマーキング後,本締めを行った.1試験体でボルトは3本あるが,本締め作業では,その 内1本(No.1)は,トルクレンチを用いて手締めで行い,残り2本(No.2,3)は,設定した回転角に締付け るナット回転角専用レンチを用いた機械締めとした.手締めは図 4-2-3 に示すように,中心を削り取っ た分度器をあてながら回転角の計測を行った.

図 4-2-2 軸力導入試験のフロー

図 4-2-3 ナット回転角計測のため分度器

4-3 軸力導入試験

4-3-1 試験方法

軸力導入試験では、各試験体の No.1 ボルトについては、回転角を 30°ごとにボルト軸力を計測した. 一方, No.2,3 ボルトでは、**表 4-2-3** に示す所定の角度の軸力のみ計測した.これら両者の結果より、導入軸力と回転角の関係を定量的に評価することとした.

軸力の初期を表す時刻としては、個々のボルトの本締め直後のひずみ値が最高となったのちに、リラ クセーションによるひずみ値減少が安定して始まる時点とした.手締めによるボルトを30°ごとに締め る際もひずみが一旦安定し、下がり始めたと判断できる時点でひずみを軸力に換算した.データロガー のひずみ計測間隔は10秒間で、ボルト本締め後あるいは30°締付け後には声で合図を送ったが、初期 時刻としては、締付け直後から30秒以内におさまっていた.一連の締付け作業終了後は1時間に1回 の軸力測定を行った.3日後には1日1回計測している.

4-3-2 試験結果

軸力導入試験の結果を表 4-3-1 に示す.表 4-3-1 においてたとえば A2-3 試験体の No.2 ボルトの軸力 が横線「-」になっているものがあるが,これらはひずみゲージなどの不具合で計測ができなかったも のである.

表 4-3-1 の初期導入時の軸力で, No.1 から3の平均値の欄を見ると, M22 および M24 において, ボル ト長が長くなるにつれて導入軸力が低くなる傾向およびナット回転角が大きくなるにつれて, 導入軸力 が高くなる傾向が見られる.

設計値比率では M22-L110(長さ 110mm のボルトであることを示している)では,100~130%程度であったが,他の試験体では,120~140%の範囲にあるものが多い.ナット回転角と導入軸力の関係を見ると,回転角 75°で導入軸力は設計値に比較して 100~125%,90°で 115~135%,120°で 135~150%程度となっている.

表 4-3-1 軸力導入試験およびリラクセーション試験の計測結果の一覧

 								初期導	【入時の	岫力(kN)							リラクセ	ーション	~(720h) _後	その軸力(kN)	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $	# 4.⊊	金体力	ボルト			手	締め(ト)	ルクレン	(チ)		機械	締め		設計値	手綱	帝め		機械	締め			-01. /+· 11.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	p+\ 9	大 144 -70	サイズ	回転重 (°)			No.1 ;	ボルト			No.2	No.3	平均值	比率	No.1	割合(%)	No.2	割合(%)	No.3	割合(%)	平均值	設計値比 率(%)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					0°	30°	60°	75°	90°	120°	ボルト	ボルト		(%)	ボルト	P1 L ()	ボルト	B) [] ()	ボルト	B1 L ()		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		A1-1	M22x70	75	43.89	117.8	183.0	241.3			256.7	248.0	248.7	121.3	218.3	106.5	-	-	222.4	108.5	220.4	107.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		A1-2	3.2d	90	50.13	143.6	224.0		282.5		253.3	243.2	259.7	126.7	259.5	126.6	204.5	99.8	218.5	106.6	227.5	111.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		A1-3		120	60.63	154.9	225.6		282.3	324.0	295.1	293.2	304.1	148.3	306.2	149.4	280.6	136.9	265.7	129.6	284.2	138.6
$ \begin{split} \mathbb{N}22 \\ \mathbb{N}24 $		A2-1	M22x90	75	68.74	140.9	221.7	258.4			231.5	239.2	243.0	118.5	236.7	115.5	209.8	102.3	219.2	106.9	221.9	108.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M22	A2-2	4.1d	90	67.85	130.1	211.6		277.4		267.2	285.8	276.8	135.0	250.8	122.3	240.5	117.3	260.8	127.2	250.7	122.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		A2-3		120	54.63	115.3	197.6		263.5	297.0	-	291.6	294.3	143.5	278.6	135.9	-	-	269.8	131.6	274.2	133.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		A3-1	M22×110	75	52.71	101.5	160.8	188.9			209.9	219.4	206.0	100.5	167.2	81.6	195.4	95.3	207.3	101.1	190.0	92.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		A3-2	5.0d	90	41.64	104.1	185.4		253.8		219.5	229.7	234.3	114.3	239.3	116.7	183.4	89.5	216.8	105.7	213.2	104.0
y = y + z + z + z + z + z + z + z + z + z +		A3-3		120	51.92	104.0	170.6		226.9	268.0	272.7	-	270.4	131.9	251.8	122.8	253.4	123.6	-	-	252.6	123.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_			(1 = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2								kN)										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			ا د تد			手	締め(ト)	レクレン	(チ)	.,.,	tili tab	締め			毛約					1		
NO.2 NO.2 NO.3 NO.3 <t< td=""><td>試緊</td><td>食体名</td><td>ホルト サイズ</td><td>回転量</td><td></td><td></td><td>No.17</td><td>ドルト</td><td>//</td><td></td><td>192 193 No. 2</td><td>No 2</td><td>亚齿荷</td><td>設計値</td><td>T #</td><td>m 0.9</td><td>No 2</td><td>152 173</td><td>MD 0.)</td><td></td><td>亚齿庙</td><td>設計値</td></t<>	試緊	食体名	ホルト サイズ	回転量			No.17	ドルト	//		192 193 No. 2	No 2	亚齿荷	設計値	T #	m 0.9	No 2	152 173	MD 0.)		亚齿庙	設計値
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(°)	0°	30°	, 60°	750	90°	120°	ボルト	ボルト	十一一世	(%)	ボルト	割合(%)	ボルト	割合(%)	ボルト	割合(%)	十一個	比率(%)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	B1-1		75	36.38	140.8	226.5	291.7			307.5	297.1	298.8	125.5	271.6	114.1	277.2	116.5	262.7	110.4	270.5	113.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		B1-2	M24x75	90	33.81	139.5	259.3		327.6		-	325.6	326.6	137.2	301.9	126.8	-	-	302.0	126.9	302.0	126.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		B1-3	3.1d	120	40.14	131.0	244.6		326.7	349.2	321.1	305.2	325.2	136.6	324.8	136.5	299.5	125.9	282.4	118.6	302.2	127.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		B2-1		75	38.02	119.0	235.2	294.8			288.3	284.0	289.0	121.4	267.7	112.5	263.3	110.6	262.3	110.2	264.4	111.1
B2-3 4.2d 120 35.36 119.6 242.8 336.2 348.5 326.8 331.0 335.4 140.9 320.1 134.5 - - 305.5 128.4 312.8 131.4 B3-1 M24x120 90 41.12 112.8 279.4 264.8 276.0 273.4 114.9 256.6 107.8 - - - 256.6 107.8 B3-2 M24x120 90 41.12 112.8 202.7 289.0 303.9 305.9 290.6 125.9 267.9 112.5 281.7 118.4 278.5 117.0 276.0 116.0	M24	B2-2	M24x100	90	40.69	135.3	244.8		329.1		326.0	326.5	327.2	137.5	302.5	127.1	300.3	126.2	299.7	125.9	300.8	126.4
B3-1 M24x120 75 40.84 112.6 223.8 279.4 264.8 276.0 273.4 114.9 256.6 107.8 - - - 256.6 107.8 B3-2 M24x120 90 41.12 112.8 202.7 289.0 303.9 305.9 299.6 125.9 267.9 112.5 281.7 118.4 278.5 117.0 276.0 116.0		B2-3	4.2d	120	35.36	119.6	242.8		336.2	348.5	326.8	331.0	335.4	140.9	320.1	134.5	-	-	305.5	128.4	312.8	131.4
B3-2 M24x120 90 41.12 112.8 202.7 289.0 303.9 305.9 299.6 125.9 267.9 112.5 281.7 118.4 278.5 117.0 276.0 116.0		B3-1		75	40.84	112.6	223.8	279.4			264.8	276.0	273.4	114.9	256.6	107.8	-	-	-	-	256.6	107.8
		D2 2	M24x120	90	41.12	112.8	202.7	<u> </u>	289.0		303.9	305.9	299.6	125.0	267.9	112.5	281.7	118.4	278.5	117.0	276.0	116.0
B3-3 120 44.30 131.4 228.4 324.5 337.3 316.5 315.9 323.2 135.8 312.5 131.3 293.1 123.1 295.4 124.1 300.3 126.2		B3-2 5.0d	20	41.12	112.0	202.7		202.0		505.7	505.5	277.0	123.9	207.2	112.0	201.7				270.0		

4-4 リラクセーション試験

4-4-1 試験方法

リラクセーション試験は,表4-2-3で示した18ケースであり,合わせて54本のボルトとし,計測期間は720時間(30日)とした.

4-4-2 試験による軸力残存率の結果

図 4-4-1 に、リラクセーションによるひずみの経時変化を示す. 表 4-4-1 には、リラクセーション後の軸力を数値で示している. 図 4-4-1 の縦軸は初期のひずみ値により無次元化したものである. これらの曲線は試験体にある 3 つのボルトの値を平均したものである.

図 4-4-1 (a)~(c)は M22, 図 4-4-1 (d)~(f)は M24 の結果である. M22-L75 および-L110 の一部で残 存率が 90%を若干下回る程度に落ち込んでいる試験体,あるいは,90%程度にまで低下している試験体が 見られる.しかしながら,他の大部分のボルトにおいては,軸力低下は 92~94%程度におさまっている.

リラクセーションは締付け直後が著しいといわれている.初期の 30 分間の軸力の推移を各図ととも に拡大して示しているが、いずれの試験体においても、94~98%にまで低下していることがわかる.そ の後も軸力は低下し続け、200 時間ほどが経過すると、軸力の低下はさほど見られなくなる場合が多か った. ナット回転角との関係を見ると、多くの試験体において、回転角が大きいほうが、軸力残存率が高い 傾向が見られた.

リラクセーション試験において,720時間後の軸力残存率の数値を表にしたものが表4-4-1であるが, 既往の研究において,南ら⁴⁾が同様に無機ジンクのリラクセーション試験を行ったが,軸力残存率はお おむね90%程度であり,既往の研究と同様の傾向を示した.

図 4-4-1 リラクセーション試験による軸力残存率の低下

表 4-4-1 残存軸力の割合

				軸力残	存率(%)				
			M22			M24			
		L70	L90	L110	L75	L100	L120		
		(3.2d)	(4.1d)	(5.0d)	(3.1d)	(4.2d)	(5.0d)		
日	75°	90.06	91.29	92.05	90.57	91.49	91.85		
転	90°	87.48	90.55	90.74	92.46	91.94	92.14		
角	120°	93.41	93.18	93.44	92.93	92.07	92.92		
平均值		90.32	91.67	92.07	91.99	91.84	92.30		
			91.35		92.04				

4-5 F10T でのナット回転量の提案

図 4-5-1 に、軸力導入試験時のナット回転量と導入軸力の関係を示す.図 4-5-1 (a) ~ (c) は M22, (d) ~ (f) は M24 の場合である.

図 4-5-1 (a) ~ (b) の M22 において, L70 および L90 では, ナット回転量が 60°ではおおむね設計軸力 が導入されていることがわかる.また,ナット回転量が 75°になると設計軸力の 120%が導入されてい るといえる.しかし,図 4-5-1 (c) に示すように,L110 になると,ナット回転量が 75°で設計軸力とほ ぼ同じ軸力が導入され,90°で 120%になる結果となった.ナット回転量が 120°になると,L70 および L90 において,ボルト軸力は設計軸力の 140%になる.図 4-5-1 (b) の L90 においては,ナット回転量が 90°を超えると導入軸力との関係が線形ではなくなっている.図 4-5-1 (d) ~ (f) の M24 においては,L75, L100 だけでなく,L120 の場合でもナット回転量 60°において設計軸力と同等の軸力が導入されている こと,およびナット回転量 75°で 120%が導入されていることがわかる.M24 ではすべてのボルト長にお いて,ナット回転量が 90°を超えると,それまでの導入軸力-ナット回転角関係から傾きが減少し,非 線形領域に入っていることがわかる.

以上の結果から,実施工でのナット回転法の適用に向けたナット回転量の提案を行う.ここでのボルト締付けは締付け精度が高い,ナット回転角専用レンチを使用することを前提としている.適切なナット回転量とは,ボルトねじ部が降伏域(非線形性が生じない)に入らないこと,およびリラクセーション後も設計ボルト軸力を満足することの条件を満たす回転量^{5),6)}となる.なお,トルク法では,設計ボルト軸力の110%の軸力となるように締付け,その締付けトルクの規定上限値は,5 個の平均値において M22で261kN(127%)である.実施工では,個々のボルトでは200~260kN で締付けられ,その平均値は231kN(112%)である⁴⁾.

図 4-5-2 にリラクセーション後, つまり 720 時間後のボルト軸力と締付け時のナット回転量の関係を示す.図 4-5-2 (a)の M22 においては, L70 および L90 では 90°が上記で示した軸力範囲に入っているといえる.L110 では 90°においては設計軸力とほぼ同じ値となってしまうことからそれより若干大きい 105°が, L70 と同等の軸力であると考えられる.

表 4-3-1 の M24 においては, M22 より同じ角度でも軸力が高く, L75 および L100 において 90°では 126%を上回る.よって 90°よりも若干小さい 85°がよいと考えられる.85°における近似線では 120% となる角度となる.ただし, L120 においては,回転量 90°において軸力は 116%となっているので,90°

でよいと判断した.

既往の研究で遅れ破壊に関するものとして池田ら⁷⁾のものがある.池田らは F10T-M22 相当のボルトを 用いて海上環境などで暴露試験を 20 年間続けている.その中に軸力 350kN のものであっても拡散性水 素濃度が 0.6ppm 程度で遅れ破壊の可能性が生じてくる 1.0ppm に対して余裕があることを示している. 他の文献^{8),9)}でも遅れ破壊は報告されていない.西川ら¹⁰⁾も腐食環境への配慮が必要と述べつつも,鋼 材品質の向上もあり,遅れ破壊は起こりにくいのではないかと述べている.

提案されたナット回転量をまとめると表 4-5-1 のようになる. なお,施工に関しては,従来と同様に 適切な施工管理を行い,特に一次締めの軸力管理には十分な配慮が必要であると考えている. 上記の既 往の研究結果もふまえて,提案する方法でボルトを締付けたとしても遅れ破壊の可能性は少ないと考え る. なお, 5.0dを越える場合は,試験を行い,回転量を設定する必要があると考えられる.

図 4-5-1 ナット回転量とボルト軸力

図 4-5-2 720 時間後のボルト軸力とナット回転角

表 4-5-1 提案するナット回転量

ギルト焼め付け	ボルト径							
	М	22	М	24				
ボルト長	≦4.1d	\leq 5.0d	\leq 4.2d	\leq 5.0d				
一次締め (トルク法)	150Nm	150Nm	200Nm	200Nm				
本締め (ナット回転法)	90度	105度	85度	90度				

参考文献

1) 田島二郎,青木博文,田中淳夫,小林昌一,北後寿:高力ボルト接合:ナット回転法の提案,JSSC No. 9, 1973.

2) 板垣秀克,和泉公比古:回転法のF10Tへの適用,首都高技報 No.7, 1975.

3) 土木学会:高力ボルト摩擦接合継手の設計・施工・維持管理指針(案),2006.12.

4) 南邦明:厚膜型無機ジンクリッチペイントを施した高力ボルト継手における導入軸力の影響の考察, 土木学会論文集 A1, Vol. 74, No. 1, pp. 58-63, 2018.

5) 南邦明, 斉藤雅充, 横山秀喜, 杉本一朗, 能島隆男, 増永寿彦, 長崎英二: 亜鉛アルミ擬合金溶射 を施した高ボルト摩擦接合継手に関する研究, 土木学会論文集 A1, Vol. 68. No. 2, pp. 427-439, 2012. 6 6) 南邦明, 吉原伸行, 徳富恭彦, 鈴木茂弘: りん酸塩処理した溶融亜鉛めっき接合面の高力ボルト摩 擦接合継手におけるナット回転角の提案, 土木学会論文集 A1, Vol. 69. No. 3, pp. 467-480, 2013. 10 7) 池田秀継, 畑中清: 耐力点締付法に用いる摩擦接合用高力ボルトの暴露試験報告, 鋼構造論文集, Vol. 21, No. 84, pp1-7, 2014.

8)橋田芳朗,橋本郁郎,今村壮宏,山下恭敬,松田哲夫,山口弘信:38年供用後のHTB F11Tの遅れ破

壞特性, 土木学会第67回年次学術講演会, I-344, 2014.

9) 本州四国連絡橋公団,海洋架橋調査会:工場部構造委員会報告書,本州四国連絡橋の海洋架橋技術 に関する調査研究, 1992.3.

10) 西川和廣,高岡司郎,菅原一昌:高力ボルト締付け工法一耐力点法一,橋梁と基礎, Vol. 24, No. 7, pp. 35-43, 1990.

5. すべり耐力試験

5-1 目的

4章に引き続き、F10Tのナット回転法の適用を目的とし、4章で提案された回転角により締め付けた 試験片に対して、軸力導入試験、リラクセーション試験およびすべり耐力試験を行ったので、その結果 を報告する.

5-2 試験体

5-2-1 試験体の使用材料および形状・寸法

本試験で使用した鋼材および高力ボルトは,2章,3章と同じ表 4-2-1,表 4-2-2 で示した材料を使用 した.

試験体形状を図 5-2-1 に示す. ボルト径による2種類を使用し, ボルト長により適用板厚を選定した. また, 孔径は, 各試験体ともに標準孔を用い, その他の寸法については, 標準試験片¹⁾の寸法とした. 母板あるいは連結板の降伏荷重に対するすべり荷重の比(β値)は 0.6~0.9 であり, すべり先行で限界 状態となる条件となっている. なお, 試験体は固定側とすべり側を設定し, 固定側については3本のボ ルトを配置し, すべりが生じないよう配慮した.

図 5-2-1 試験体形状

5-2-2 試験体の種類および接触面の表面処理

試験体の種類を表 5-2-1 に示す. 試験体の種類は,2章,3章を参考に,ボルト径およびボルト長を 変えた4種類とし,試験体は,各種類で3体製作し,合わせて12体を試験に供した.

塗装作業, 膜厚計測についても, 2章, 3章と同様とした. また, これらの作業は, 2章, 3章の試験 体と同時に行った. 膜厚計測結果を**表 5-2-2**に示す.

表 5-2-1 試験体種類

封驗	板厚	孠(mm)	ポルト		★姪め
体名	母板 (t)	連結板 (ts)	サイズ	1次締め	^本 # Ø 回転角
C1	22	12	M22-L90(4.1d)	150N.m	90°
C2	32	19	M22-L110(5.0d)	13010-111	105°
D1	25	16	M24-L100(4.2d)	2001	85°
D2	36	19	M24-L120(5.0d)	2001N*III	90°

表 5-2-2 無機ジンク膜厚測定結果

試験	膜厚	Ĩ(μm)	平均値(母板と
体名	母板	連結板	連結板)
C1-1	87	87	87
C1-2	91	97	94
C1-3	86	88	87
C2-1	92	84	88
C2-2	91	91	91
C2-3	85	85	85
D1-1	85	99	92
D1-2	83	96	90
D1-3	85	90	88
D2-1	87	85	86
D2-2	91	100	96
D2-3	100	86	93

5-3 試験概要

5-3-1 ボルトの締付けおよびひずみ計測

ー次締めおよび本締めは、4章で提案した表 4-5-1 に従い行った.なお、固定側(すべらせない側)の ボルトについては、120°で締付けた.

ひずみゲージ取り付け位置やひずみ計測方法等は、2章、3章と同様とした.ただし、計測は、1つの 試験体ですべり側の2本のみとした.

5-3-2 リラクセーション試験

リラクセーション試験は,表 5-2-1 で示した 12 ケースであり,合わせて 24 本のボルトとし,計測期間は 720 時間(30 日)とした.

5-3-3 すべり耐力試験

すべり耐力試験は、ボルト締付け 720 時間後に実施した.載荷状況を図 5-3-1 に示す.試験には載荷 能力 2000kN の THU 型万能試験機 (東京衡機)を用いた.本試験では、試験体両端部それぞれ 130mm の範 囲をチャックで固定し、試験体のすべりが生じるまで引張荷重を徐々に加えた.試験時には、図 5-2-1 に示す No.1 ボルト位置で母板と連結板間の相対変位を測定した.図 5-3-1 にクリップゲージ側面の拡 大図を示しているが、アクリル製の支え材を2個使用し、一つを母板に接着、もう一つを連結板に接着 することで相対変位を測定した.クリップゲージは動ひずみ測定器およびデータロガーに接続し、100Hz サンプリングでデータを取得した.

すべり耐力は、荷重が急激に下がるか、荷重の降下がなくすべりが不明確な場合はボルト位置での相対変位が 0.1mm になったときの荷重値²⁾とした.

図 5-3-1 すべり耐力試験載荷状況

5-4-1 ボルト軸力計測結果

ボルト軸力導入試験結果を表 5-4-1 に示す.初期導入軸力は設計軸力の 113~133%となったが,大半が 120%台になった.120~130%となるように,ナット回転量を決めたのでこの範囲に入ったことになる が,D2 シリーズ,つまり M24-L120 では低めになってしまった.

リラクセーション後のボルト軸力は設計軸力の 103~122%の範囲となった. 軸力の残存率でみると, すべての試験体で 90%前後になり, 10%を大幅に上回る低下率とはならなかった.

試		緕	行けす	付け直後N			すへ	ゞり試験	直前Na		動力成 軸力	軸力	軸力 すべり		すべい	0係数
験	軸力	(kN)	₩ ₩	設計値	設計値	軸力	i (kN)	平均軸	設計値	設計値	111月代 11月代	残存率	荷重	すへ	µa(実軸力	µb(設計軸
体	No.1	No.2	平均	比率	比率平均	No.1	No.2	力(kN)	比率	比率平均	17-77-	平均	(kN)	り目	による)	力による)
C1-1	260.0	244.8	252.4	123.1		235.5	221.0	228.3	111.4		90.61		513.6	あり	0.562	0.626
C1-2	236.2	253.9	245.1	119.5	119.4	-	-	-	-	108.1	-	91.03	433.6	あり	-	0.529
C1-3	245.2	228.2	236.7	115.5		224.2	205.4	214.8	104.8		91.46		410.8	あり	0.478	0.501
C2-1	262.6	-	262.6	128.1		239.6	-	239.6	116.9		91.23		539.2	あり	0.563	0.658
C2-2	255.0	244.1	249.5	121.7	123.2	233.1	226.5	229.8	112.1	113.3	91.41	91.78	498.8	あり	0.543	0.608
C2-3	239.9	251.2	245.5	119.8		222.4	232.2	227.3	110.9		92.70		576.4	あり	0.634	0.703
D1-1	325.0	304.1	314.6	132.2		287.4	276.3	281.9	118.4		88.42		561.2	あり	0.498	0.589
D1-2	-	290.5	290.5	122.1	125.3	-	263.1	263.1	110.6	113.4	-	89.79	565.4	あり	0.537	0.594
D1-3	279.6	299.0	289.3	121.5		254.9	274.6	264.7	111.2		91.16		653.4	あり	0.617	0.686
D2-1	239.0	267.1	253.1	106.3		197.2	245.5	221.3	92.99		82.48		495.0	あり	0.559	0.520
D2-2	-	272.6	272.6	114.5	114.4	-	254.2	254.2	106.8	103.6	-	87.15	652.8	あり	0.642	0.686
D2-3	284.0	298.3	291.1	122.3		260.8	267.3	264.0	110.9		91.82		597.0	あり	0.565	0.627

表 5-4-1 すべり耐力試験結果およびすべり係数

5-4-2 すべり係数算出結果

すべり荷重およびすべり係数算出結果を表 5-4-1 に示す.

すべての試験片において、継手部分がすべった際に大きな音がした.また、すべり音とともに荷重が 急激に低下した.このため、変位量によるすべりの判定を行う必要は生じなかった.

すべり係数は,式(5-4-1)を用いて計算した.ボルト軸力としては,載荷直前のボルト軸力(N_a)を用いて計算した μ_a と,設計ボルト軸力(N_b)を用いて計算した μ_b を示している.

$$\mu = \frac{P}{nmN} \qquad \cdot \cdot \cdot \vec{\mathfrak{1}} (5-4-1)$$

いずれの試験体においてもすべり係数(µ_a)は,道路橋示方書³⁾でも示されている無機ジンクリッチ ペイント下地 0.45 を上回り,0.48~0.64 の範囲にあった.ボルト径が太いほうが,また,ボルト長が 長いほうがすべり係数が高くなる傾向はみられたが,差はほとんどないといえる.

設計ボルト軸力を用いて計算したすべり係数 μb はすべてのケースにおいて, 0.5 を上回り, 0.5~0.7 の範囲となった.

5-4-3 すべり係数に及ぼす導入軸力, 膜厚の影響

すべり係数と軸力の関係を図 5-4-1 に、すべり係数と膜厚の関係を図 5-4-2 に示す.軸力が高くなれば、すべり係数も若干低くなる傾向が報告されているが⁴⁾、本試験ではその傾向は見らなかった.また、 一般に膜厚が薄くなるとすべり係数は低くなり、厚くなり過ぎても低くなる傾向¹⁾にあるが、図 5-4-2 に示すように本試験の膜厚のばらつきの範囲程度ではすべり係数には影響しなかった.

図 5-4-1 載荷直前のボルト軸力を用いて計算したすべり係数とボルト軸力

図 5-4-2 載荷直前のボルト軸力を用いて計算したすべり係数とジンク膜厚

5-4-4 すべり耐力試験後の接触面の観察

試験体の試験後の接触面(すべり面)を図 5-4-3 に示す.図 5-4-3(a)に示すように、ボルト孔周辺のす べったと思われる箇所では無機ジンクの剥離が生じた.塗膜の剥離状況が著しい場合の方が、すべり係 数は低くなる傾向となった.図 5-4-3(c)に示すように、厚い板では塗膜剥離の程度が小さかった.また、 ボルト孔のこば面にボルトが接触した状態(支圧状態)になったと思われる試験体はなかった.

図 5-4-3 すべり耐力試験後の接触面の観察

参考文献

1) 土木学会:高力ボルト摩擦接合継手の設計・施工・維持管理指針(案),2006.12.

2) 南邦明,田村洋,白旗弘実,内田大介,吉岡夏樹,濱達矢:摩擦処理面に応じた変位量によるすべり判定値の提案,土木学会第74回年次講演会,2019.9.

3) 日本道路協会:道路橋示方書・同解説Ⅱ鋼橋編・鋼部材編,2017.11

4) 南邦明:厚膜型無機ジンクリッチペイントを施した高力ボルト継手における導入軸力の影響の考察, 土木学会論文集 A1, Vol. 74, No. 1, pp. 58-63, 2018.

6. 長期リラクセーション試験

6-1 試験の目的

材料が一定ひずみを保持しているとき、応力が時間とともに減少する現象をリラクセーションという. 応力弛緩、応力緩和とも呼ばれている.高力ボルトのリラクセーションの発生原因としては、ボルトね じ部や接合面の局所的な塑性変形やクリープ、ボルト軸部のクリープ、塗膜のクリープが考えられてい る.ボルト軸力低下量に影響を与える因子として他に、導入軸力、接合面の表面処理およびボルト孔の 余裕が考えられている.

摩擦継手の高力ボルト軸力の経年変化についてはいくつかの文献がある. 鋼構造接合資料集成¹⁾では, 軸力低下のグラフとともに赤錆で 5%, 塗装処理で 10%, 溶融亜鉛処理で 15%の軸力低下があることを 示している. 柳沼 ²⁾は詳細な文献調査で,主に,無塗装系(赤錆,ブラスト),塗装系(無機ジンクリッチ ペイント,溶融亜鉛めっきなど)をパラメータに F8T, F10T, S10T のボルトの軸力低下の度合いをま とめている. 残存軸力 y は,時間 x の関数で,片対数グラフ上で $y=a \times log(x)$ +b で回帰して, 100 年 後の残存軸力として,無塗装系で約 95%,無機ジンクで厚い(300 μ m)もので 80%,比較的薄い(50 μ m)もので 90%,溶融亜鉛めっきでは 80~90%であることを示している. 柳沼はすべり係数の経年変化 も調べているが,平均すればすべり係数にはほとんど変化がないことを示している.

ボルト軸力に関して,軸力が安定するのに数日しかかからないものもあれば,1週間程度かかる場合, 1か月程度かかる場合など^{3,4},ばらつきも多い.数か月といったオーダーになれば,経年変化の影響も 受けるものと思われる.ここでは1年ほどの時間をかけて行ったリラクセーション試験の結果を報告す る.ボルト締付け方法および軸力の変化,気温の変化(経年変化)との関係をまとめる.

6-2 試験体および軸力導入試験

リラクセーション試験で使用した試験体を図 6-2-1 に示す. 試験片の鋼種は SM490Y である. 試験 体の機械的性質および化学組成は表 6-2-1 に示すとおりである. ボルトピッチや緑端距離は標準試験片 を参考にしている. 試験体の形状は 4 章の M24 で用いたものと同じであるが, ボルト長さに応じた 3 種類を用意した. 母板および連結板の組み合わせを表 6-1-2 に示す. 表 6-2-3 に使用したボルトの機械 的性質を示す. 試験片の総数は 9 体となる. 試験体には無機ジンクリッチペイントを, 厚さ 75μm を 目安となるように塗装している.

図 6-2-1 リラクセーション試験で用いた試験体

表 6-2-1 試験体の母板,連結板の鋼種,機械的性質および化学成分

	七回		機械的性質	化学成分(%)						
鋼種	W序 (mm)	耐力	引張強度	(山 て) (0/)	C		c :	Ma	Л	C
		(N/mm^2)	(N/mm^2)	1甲 (い)	C		51	Mn	Р	2
SM490YA	9	457	535	22		0.15	0.19	1.08	0.023	0.007
SM490YA	12	482	537	22		0.14	0.18	1.10	0.016	0.003
SM490YB	16	354	534	20		0.15	0.19	1.08	0.015	0.004
SM490YB	19	461	542	23		0.15	0.19	1.07	0.016	0.005
SM490YB	25	426	513	25		0.15	0.19	1.08	0.016	0.004
SM490YB	36	443	535	25		0.15	0.19	1.12	0.016	0.005

表 6-2-2 試験体の母板,連結板の種類および本締めのナット回転角

試験 体名	板厚	(mm)	ボルト	ボルト締付け			
	母板 (t)	連結板 (ts)	ホルト サイズ	1次締め	本締め		
B1-1			M24 I 75		75°		
B1-2	12	9	(3.1d)	200N•m	90°		
B1-3			(3.10)		120°		
B2-1	25	16	M24 I 100		75°		
B2-2			(4.24)		90°		
B2-3			(4.2u)		120°		
B3-1	36	19	M24 I 120		75°		
B3-2			(5.04)		90°		
B3-3			(3.00)		120°		

ボルト径	首下長さ (mm)	を 有効 断面積 (mm ²)			ナット	座金						
			4号試験片				製	品 	製品	製品	トルク	
			耐力	引張強度	伸び	絞り	引張荷重	硬さ	硬さ	硬さ	さん、「後数値」	
			(N/mm^2)	(N/mm^2)	(%)	(%)	(kN)	(HRC)	(HRC)	(HRC)	(十均恒)	
M24	75		1049	1093	18	73	373	33	26	41	0.122	
	100	353	1033	1072	18	64	376	33	27	40	0.129	
	120		1030	1079	21	67	379	32	27	39	0.131	

表 6-2-3 ボルトの機械的性質

図 6-2-2 ボルトへのひずみゲージ貼り付け

図 6-2-3 試験のフロー

ボルトのひずみゲージ貼り付けを図 6-2-2 に示す.3章と同様に,ボルト頭部2箇所に直径4mmの 穴を明け,ボルト軸部に長さ5mmのゲージを貼り付けた.

軸力導入試験のフローを図 6-2-3 に示す.ナット回転法によりボルトを締めた.1 次締めは 200N・ m とした.1 次締めのあと,マーキングを行った.表 6-2-2 に示すように,ナット回転量をパラメータ とし,75,90,および 120 度としている.ボルトの1つはトルクレンチによる手締めを行い,30 度ご とに軸力を求めた.軸力は,別途行ったキャリブレーション試験で得られたひずみ-軸力関係により計算 している.残りの2本のボルトはナット回転角専用レンチによる機械締めである.

軸力導入試験開始後、ひずみデータを記録するデータロガーは 10 秒おきにデータを取得するように

設定した.30度おきの手締めやレンチによる機械締めが終わった際に,データロガーの確認者に合図を 送り,確認者はひずみ値が安定するのを確認し,そこを初期値とした.ひずみの初期値となる時刻は合 図が出されてからおおむね30秒以内には始まっていた.

9体の試験片のボルトすべてを締付けた後には、ひずみ計測は1時間に1回に変更した.これを3日間続けた後には、1日1回のひずみ計測の設定とした.締付けたボルトの他に、温度補正のためのダミーのボルト1本から出ているひずみゲージもデータロガーにとりつけた.図6-2-4に締め付け時の実験状況および試験体の設置状況を示す.

図 6-2-4 軸力導入試験状況およびリラクセーション試験体設置状況

6-3 軸力導入試験結果

初期軸力導入試験結果を表 6-3-1 に示す.表中に「-」となっているものはひずみゲージの断線などで データが取れなかったものである.ボルトに導入された軸力の値としては、ナット回転量が大きくなる につれて大きくなる傾向が、また、同一のナット回転量ではボルト長さが長くなるにつれて、軸力が小 さくなる傾向が読み取れる.

設計値比率では、M24-L75 および 100 では 120~140%程度の範囲になっており、M24-L120 では、 110~130%程度になっている.

ナット回転角とボルト軸力の関係を図 6-3-1 に示す. 図 6-3-1(a), (b)および(c)はそれぞれボルト長さ が 75mm, 100mm, 120mm の場合である. 多少のばらつきがあるものの, ナット回転角が 60 度程度 になれば,設計ボルト軸力が導入されている可能性が高いといえる. また,ナット回転角が 90 度を超 えると,回転量と軸力の間には線形性が見られなくなる.これらは 4-4 の結果とおおむね一致している.

試験体名		ボルト サイズ	初期導入軸力(kN)										
			回転量 (°)	手締め(トルクレンチ)						機械締め			ションは
				No.1ボルト						No.2	No.3	平均值	記 司 10 レ 安 (小)
				0°	30°	60°	75°	90°	120°	ボルト	ボルト		レ44(%)
M24	B1-1	M24–L75 3.1d	75	58.7	107.8	242.6	287.3			307.6	259.0	284.7	119.6
	B1-2		90	54.7	170.9	264.6		306.8		334.1	262.5	301.1	126.5
	B1-3		120	47.7	164.5	262.5		334.0	349.2	315.7	303.4	322.8	135.6
	B2-1	M24-L100 4.2d	75	67.7	209.0	288.4	318.5			251.9	-	285.2	119.8
	B2-2		90	65.2	168.2	238.5		311.2		336.1	369.7	339.0	142.4
	B2-3		120	70.6	163.8	249.3		304.4	317.3	301.7	292.3	303.8	127.6
	B3-1	M24-L120 5.0d	75	44.2	129.8	205.4	285.6			256.8	221.4	254.6	107.0
	B3-2		90	48.8	110.0	175.0		244.8		279.1	272.7	265.5	111.6
	B3-3		120	60.8	149.9	235.1		302.7	317.6	303.0	-	310.3	130.4

表 6-3-1 軸力導入試験結果

図 6-3-1 ナット回転角とボルト軸力

6-4 リラクセーション試験結果

6-4-1 締め付け直後のリラクセーション

リラクセーション結果を示す. 図 6-4-1 は締付けた直後の 30 分間のものである. 図 6-4-1(a), (b)お よび(c)はそれぞれ長さ 75mm, 100mm, 120mm のボルトである. 縦軸は軸力残存率を示している. つ まり,締め付け開始とした時刻のひずみに対する当該時刻のひずみの割合を示している. すべてのケー スにおいて 30 分間で,残存率として 95%から 99%の範囲におさまっているが, 96~97%であるパター ンがもっとも多い. これは他の例, 4-5 の結果などとも同様である.

図 6-4-1 締め付け直後 30 分間のリラクセーション

6-4-2 締め付け1か月のリラクセーション

図 6-4-2 に 1 か月間(720 時間)の軸力残存率の変化を示している.いずれのケースにおいても残存率 は 90~95%の範囲となっている.1 か月経過後には残存率の変化はほぼない状態であるといえる.図 6-4-3 に初期ボルト導入軸力と 1 か月後の軸力残存率の関係を示す.初期ボルト軸力は設計軸力に対す る比率で示している.初期ボルト軸力は設計値に対して,120~140%に分布している.初期ボルト軸力 にかかわらず,残存率は 90~95%の範囲にある傾向は認められるが,90%未満あるいは 95%以上とな る例も数件見られる.

図 6-4-2 1か月間のリラクセーション挙動

図 6-4-3 初期導入軸力(設計軸力比とリラクセーションによる軸力低下率(1 か月間)

6-4-3 締め付け1年間のリラクセーション

図 6-4-4に1年間を超えるボルトの軸力残存率を示す.図 6-4-4(a)~(c)は長さ75mmのボルト,(d)~(f)は長さ100mmのボルト,(g)~(i)は長さ120mmのボルトの結果であり,図 6-4-4(a),(d),(g)は75度の回転角で締めたもの,(b),(e),(h)は90度,(c),(f),(i)は120度で締めたものである.試験開始から100日から160日の間では,一部のチャンネルでデータ欠損が発生してしまった.図 6-4-4(a)から(e)に示すチャンネルのものはデータ計測ができたが,図 6-4-4(f)から(i)に示すチャンネルおよび温度補正のためのダミーゲージのチャンネルは計測ができなくなった.試験経過160日あたりでデータロガーを再起動させ,それ以降は値の差分でひずみ値として計測を継続した.図 6-4-4(a)~(e)の100~160日間のデータは温度補正されていないこととなる.図 6-4-4(f)~(i)は100日後と160日後のひずみに変化がないものと仮定してのデータ計測となる.

上記の問題はあるものの,図 6-4-4 に示すように,160 日以降になるとひずみの値はほぼ一定となっていることがわかる.図 6-4-2 および図 6-4-4 とも比較して,ほとんどが 30 日程度でほぼ一定に落ち着く挙動を見せている.

図 6-4-4 1年以上のリラクセーション挙動

図 6-4-5 締付け直後を基準とした 100 日後の軸力残存率と 30 日後と 100 日後の軸力残存の変化

図 6-4-5 に 100 日後の軸力残存率を示す.図 6-4-5(a)は設計軸力に対する初期ボルト軸力の比を横軸 に、100 日後の軸力残存率を縦軸にとったものである.図 6-4-3 と図 6-4-5(a)を比較するとそれほど変 化は見られないようである.そこで、図 6-4-5(b)には縦軸に 30 日後の軸力残存率と 100 日後の軸力残 存率をひいたものを示している.値が正となるのは軸力が低下したことを示し、負となるのは軸力が増 加したことを示している.図 6-4-5(b)より、初期ボルト軸力にかかわらず、プロットは 0.005 を中心に 分布している.つまり、30 日から 100 日の間でボルトの軸力は 0.5%の低下にとどまっていることを示 している.

図 6-4-6 ダミーボルトのひずみの1年間の推移

リラクセーション試験では温度の影響を取り除くために、軸力のかからないボルトにダミーとなるゲ

ージを貼り付けて補正を行う.図6-4-6にダミーとなるボルトに貼付したゲージの値の変化を示す.図 6-4-6には気象庁のウェブにおいて東京の気温の変化を抽出している⁵.毎日ひずみを計測しているの が14時前後で1日の最高気温になることが多いので、その日の最高気温をプロットしている.

リラクセーション試験を開始したのは2018年の7月2日である.8月となる時期にはひずみが増加しているが、温度による膨張と考えられる.ひずみの値は9月、10月と経過するにつれて低くなっていってくことがわかり、翌年の1月や2月において、最低にまで下がっている.つまり、ひずみデータは経年変化を示していることがわかる.

図 6-4-6 において計測開始から 100 日までの変化は 160 日以降の変化よりも小さい. これは計測開始 時にはダミーボルトを立てた状態で保管したからと思われる. 160 日以降はダミーボルトを寝かせた状 態とした. 最初の 100 日間はボルトの自重の影響もあって,ひずみ値の変化が小さくなったと考えられ る.

図 6-4-6 においてもっともひずみが小さいものは-10 µ であり、もっとも大きいものは 160 µ 程度である. 年間でひずみは 170 µ 程度変化することになる. 170 µ の変化は軸力に換算すると、15kN 程度の変化となる. 経年変動は導入時の軸力に対して 5~6%となる.

6-5 まとめ

超長期リラクセーション試験の結果をまとめる.

(1) データ欠損などの問題はあったが、ボルト軸力は初期導入軸力の高低にかかわらず締付け後 30 日 で落ち着き、締め付け後 100 日までは 0.5%の低下にとどまった.

(2) ダミーゲージは経年の温度変化と同様の傾向を示す.ただし、ダミーゲージを貼り付けたボルトの 置き方により、ひずみ値の変化分は影響を受ける.ひずみ値の経年の最大変化分は 170 µ 程度であり、 軸力に換算すると 15kN 程度であり、設計軸力に対しても約 5%であり、それほどの影響はないものと考 えられる.

参考文献

1) 日本鋼構造協会接合小委員会 編,鋼構造接合資料集成 : リベット接合・高力ボルト接合,技報堂 出版, 1977.3.

2) 柳沼安俊:高力ボルト摩擦接合継手のボルト軸力とすべり係数の経年変化について,東骨技報, No. 56, pp. 51-64, 2015.

3)南 邦明,斉藤雅充,横山秀喜,杉本一朗,能島隆男,増永寿彦,長崎英二:亜鉛アルミ擬合金溶 射を施した高ボルト摩擦接合継手に関する研究,土木学会論文集 A1, Vol. 68. No. 2, pp. 427-439, 2012. 6
4)南 邦明,吉原伸行,徳富恭彦,鈴木茂弘:りん酸塩処理した溶融亜鉛めっき接合面の高力ボルト摩 擦接合継手におけるナット回転角の提案,土木学会論文集 A1, Vol. 69. No. 3, pp. 467-480, 2013. 10
5)気象庁|過去の気象データ・ダウンロード https://www.data.jma.go.jp/gmd/risk/obsdl/index.php 7. まとめ

本 WG では, F10T ボルトのナット回転法の適用に向けた検討を行うため,スナッグタイト試験を行 い,その後,ボルト径およびボルト長をパラメータとした軸力導入試験およびリラクセーション試験に より適切な回転角を検討した.また,提案したナット回転量で再度リラクセーション試験およびすべり 耐力試験を行った.これらの試験結果から得られた主な結論は,以下のとおりである.

(1) スナッグタイト試験で締め付けたボルトのトルクは,鉄道標準で規定されている一次締めの値 (150N・m)で平均値に近いものとなったが,大きくばらついており,標準偏差としては 18kN 程度のば らつきがあった.ナット回転法の適用に際しては,締付け精度を向上させるため,一次締めのトルク値 を規定し,実施工を行うのがよいと考えられる.

(2) ナット回転量とボルト軸力の間には、ナット回転量が 90° までの場合には、両者の間には線形関係 が見られた.ナット回転量が 90° を超えると、ボルトねじ部は塑性域(非線形領域)に達するものと考え られる. このときの設計ボルト軸力比は 140%程度であった.

(3) ナット回転法の適用に際し, M22 は一次締め 150N・m を前提として, ボルト長 4.1d 以下(d は ボルト径)のときは回転角 90°, 4.2d~5.0d では 105°, また, M24 では一次締め 200N・m を前 提として, 4.2d 以下のときは 85°, 4.3d~5.0d では 90°とする. この回転量であれば, ボルトねじ部 は塑性域に入らず, また, リラクセーション後の軸力も設計ボルト軸力を満足できる.

(4) 超長期リラクセーションでは, 締め付け後 30 日から 100 日後の間では 0~2%の軸力低下の範囲に あり, ほとんどが 0.5%低下であった. ダミーゲージは経年温度変化と同様の傾向を示した. ダミーゲ ージの経年の最大変化は 170 μ 程度であり, 軸力に換算すると 15kN であった.
巻末付録:既往研究概要

※本付録は既往の研究を要約した文献集であり、著者らの表現をそのまま引用している。

巻末付録一覧

ナッ	ト回転法の既往研究		
(a)	回転法の F10T への適用 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅱ-付録-	1
(b)	F10T ボルトのナット回転法による施工・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅱ-付録-	3
(c)	回転法の F10T への適用(その 2) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅱ-付録-	5
(d)	高カボルト接合:ナット回転法の提案・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅱ-付録-	7

高力ボルトの遅れ破壊に関する既往研究

(a)	ボルトの遅れ破壊・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅱ-付録-	9
(b)	橋梁における高カボルトの遅れ破壊 ・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅱ-付録-	10
(c)	高力ボルトの遅れ破壊に影響を及ぼす侵入水素量の確率論的評価・・・・・・・	Ⅱ-付録-	11
(d)	高力ボルトの遅れ破壊に関する実験的研究(その1) ・・・・・・・・・・・・	Ⅱ-付録-	12
(e)	高力ボルトの遅れ破壊に関する実験的研究(その2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅱ-付録-	13
(f)	高力ボルトの遅れ破壊に関する実験的研究(その3) ・・・・・・・・・・・	Ⅱ−付録−	14
(g)	高カボルトの遅れ破壊強度と熱処理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅱ−付録−	16

【概要】回転法の F10T への適用

板垣秀克,和泉公比古(第三建設部設計課)

3. 試験結果および考察

各種試験結果および考察を以下に概説する.

(1) 捩り試験

ボルト締め付け時に導入された軸力より, F10T ボルトが強度レベル,ボルトの形状に関わらず,遊 びネジ長さの 1%オフセット耐力に対応するナット 回転角が 180°以下,最大ボルト軸力に対応するナ ット回転角が 240°以上を満足しており,F8T と同 じ施工法が適用できると言える.

ナット回転法の一次締め導入軸力はバラつきが非 常に小さく導入トルクに対してほぼ一次的な関係に あり,一次締めは強度レベル・ボルト形状に関係な く施工できると思われる.

次に、ボルト捩り試験における耐力に対応する点 と最大軸力に対応する点より、二次締め回転角とし て 180°が確実に得られるならば、一次締めトルク 100kg・cm の場合でもすべてのボルトにオフセット 耐力以上の軸力が導入されること、また一次締めの 差によって生ずる導入軸力は小さいことがわかった. 最終導入軸力の試験結果より、F10T ボルトを回転 角法で締付ける場合には、降伏点に対する設計ボル ト軸力の比を F8T ボルトと同程度まで高め得るこ とがわかった.

(2) 実 splice 締め付け試験

ー次締めはスパナを使用し,導入トルク1500kg・ cm を目標に行った.先に締めたボルトがあとから 締めたボルトよりどの程度弛むか測定したところ, 最大340kg程度であった.

次に、二次締めはトルクレンチを使用し、二次締め回転角 180°で行った. 締付け完了時のボルト導入軸力はほとんどのボルトで 30ton 程度となっており、現行示方書の F10T 標準ボルト軸力 22.5ton をはるかにこえており、設計ボルト軸力を高めうるこ

1. 概要

高力ボルト継手の締付け方法には「トルク法」と 「ナット回転法」があるが、現場の締め付け作業お よび施工検査の簡素化をはかるためには、ナット回 転法による締付けに以降するのが望ましいとされて いる.現行の「道路橋示方書・同解説」(昭和48年 2月)によれば、ナット回転法で施工してよいボル トの種類はF8Tまでであるが、これを一次部材の継 手としても適用できるよう、その基礎データを得る ための実験を行った.

本報では、その実験概要と試験結果および考察を 概説する.

2. 実験概要

以下の3種類の実験を行った.

(1) 捩り(ねじり) 試験

ボルトの機械的性質・形状寸法の異なるボルトに ついての捩り試験を行った. ロットとして, 強度レ ベルが下位のものと上位のものを用意した.

(2) 実 splice 締付け試験

抵抗線歪計を貼付したボルトを用いて splice 供試体(ボルト総数 106 本)の締め付けを行い,各段階での導入軸力を測定した.その際,同時にボルトの 弛み度合なども調べた.

(3) 遅れ破壊試験

ナット回転法で締付けた F10T ボルトの遅れ破壊 特性を求めるために,F8T,F11T ボルトとの比較 試験を行った.これらについて引張試験・捩り試験 を行った後,ボルト実体と切欠付丸棒試験片による 遅れ破壊試験を行った.試験環境としては,海浜大 気・海水乾湿くり返し・0.1N-HC1水溶液を選ん だ.定荷重引張方式の応力腐食試験でその腐食環境 としては,0.1N-HC1水溶液,イオン交換水を使 用した. とを示している. なお, 二次締めによる弛みは最大 で約 1ton であった.

(3) 遅れ破壊試験

人孔海水乾湿くり返し、0.1N-HC1水溶液試験 とも 1000 時間経過後いずれのボルトにも異常は発 生しなく、その後の純引張試験でも何ら異常はなか った.海浜大気暴露試験は4ヶ月経過後も何ら異常 はなかった.

切欠付丸棒試験片による遅れ破壊試験においても, 明確な破壊特性を得るまでに至らなかった.

室内促進試験その他から判断し, F10T ボルトに ナット回転法を適用しても遅れ破壊の懸念はないも のと思われる.

【概要】F10T ボルトのナット回転法による施工

大貫一生(第二建設部設計課)

1. 概要

公団における鋼橋の現場継手はその大部分を高力 ボルトによっている.しかし、ボルト軸力のバラツ キを抑える為に施工管理に多くの時間と労力を要し ており、施工管理の省力化が今後の大きな課題であ ると思われる.現道路橋示方書からF8Tに限って導 入された「ナット回転法」も軸力の安定と省力化の 為の有効な方法であるが、F8T ボルトは2次部材に ついてだけ使用されている為に、現状ではその効果 は少ない.F10T ボルトを「ナット回転法」で締付 けることが出来ると、1 次部材の添接部に使用する ことによって省力化の面から効果が大きくなり、設 計ボルト軸力も現状の0.75 σ y から 0.85 σ y にとる ことによって、現在のF11T と同等の許容応力とす ることも考えられる.

F10T ボルトは、その伸び性能や遅れ破壊性能が F8T ボルトと似ており、「ナット回転法」による施 工が可能であるとされながらも、これまでに施工実 績がほとんどないので、現示方書では「ナット回転 法」による施工を F8T ボルトに限定している.ここ では、実施工のランプ桁において、1 次部材の添接 に F10T ボルトを使用し、「ナット回転法」によって 試験的に施工したので、その結果を報告する.

2. 試験施工の条件

(1) 試験対象桁

現場施工はランプ桁(単純合成 I 断面 2 主桁)で 行った. なお,この添接部については,F10T ボル トを従来のトルク法で締めた時の設計ボルト軸力 20.5t(0.75σy)による許容応力で照査し安全を確 認している.

(2) 使用ボルト

現場施工に使用したボルトは F10T: 294本(1次 部材用)と F8T: 356本(2次部材用)である. F10T については上記以外に室内試験・現場試験の供試ボ ルトとして 174 本を用いた.

3. 試験および考察

各種試験結果および考察を以下に概説する.

(1) 室内試験

現場試験に先立ち,ボルトの「ナット回転法」へ の適否を判断する為に,ボルトの機械的性質・変形 能に関する室内試験を行った.

(ア)素材試験

JIS に定められた試験片引張,製品引張,かたさ 試験,トルク試験を行った.各結果ともJIS 規格を 十分満足していた.

(イ) 軸力-歪試験

前もって歪と軸力の関係を調べておき,現場締付 け時にゲージの歪から軸力を算出する目的でこの試 験を行った.ねじりによるせん断力の影響を考える とボルト軸力計の精度は低いのでアームスラー試験 機を用いた.

(ウ) 捻り(ねじり) 試験

回転法に適したボルトの条件として導入軸力に対応するナット回転角が 180°以下,最大ボルト軸力に対応するナット回転角が 240°以上といわれているが,M22-70の遊びネジ長 60mmの場合の回転角230°を除いてこれを満足している.現場で使用する時の遊びネジ長 10mm~11mmに対応した 10mmの結果では,測定した5本全てがこれを満足していた.以上の結果からこのボルトは回転法によって締付けても問題ないと判断した.

- (2) 現場試験
- (ア) 締付試験(I)

ゲージ貼付ボルトを各ボルトに3ゲージの歪を測 定し、「軸力-歪試験」の結果から耐力を求めた.一 次締めトルク 20kg.m から回転法で180° 締付ける と、ボルトは完全に塑性域に入ることがわかった.(イ) 締付試験(Ⅱ)

中間ベント上で仮組が終わった桁に対して,G1 桁には全て通常の F10T ボルト,G2 桁には通常の ボルトとゲージ貼付ボルトを取り付ける.

G1 桁添接部について、1 次締めはトルクレンチで 行い 20kg.m を導入し、2 次締めは「ナットランナ ー」で 180°を目標に締付けを行った.ここでは、 締付角度の誤差、締付時間などの施工性を調査した. 回転角の施工誤差は±30°以下であり、2 次締めに 要する時間は 9~10 秒/本であった.

G2 桁添接部について、1 次締めは右半分はトルク レンチ(20kg.m)で、左半分を組立用スパナで行い、 2 次締めは「ナットランナー」を用いて締付けた. ウェブについては隣接ボルトを締付けた時のゆるみ による軸力の変化も調査したが、これはほとんど認 められなかった.

【概要】回転法の F10T への適用(その 2)

和泉公比古(第三建設部設計課) 板垣秀克(神奈川建設局調査課)

(ア) 締付け試験

各ボルトー次締め、二次締めを行い、抵抗線歪計 を貼付したボルトにより各段階の導入軸力を測定し た.また同時にボルトの弛みについても測定した.

(イ)締付機器の施工性試験

今回は,2 機種(電動式,空気式)について締付 け時間,回転角,騒音等を測定した.

(ウ)遅れ破壊の観測

遅れ破壊については,規定の二次締め回転角 (180°)の2倍を締付けた供試体を桁に取りつけ ておき,桁本体の添接部と同様長期にわたり観測を 行うものとした.

3. 試験結果および考察

各種試験結果および考察を以下に概説する.

(1) 予備試験

首下長さ 70,75,80mm の場合は,回転角法を 適用するに十分なボルトの条件として提案されてい る,遊びネジ長さの 1%オフセット耐力に対応する ナット回転角が 180°以下,最大ボルト軸力に対応 するナット回転角が 240°以上をいずれも満足して いる.首下長さ 150mm の場合は,他の首下長さの ボルトに対して 30°~40°大きな値が得られたが これは首下長さが他よりかなり長いためと思われる. しかし,この場合でも二次締め完了後には導入軸力 は遊びネジ長さの 1%オフセット耐力付近に達する ため,回転法を適用するに十分な変形能を有してい るといえる.

(2) 現場締付け試験

(ア)一次締めはトルクレンチを使用し,力いっぱ い締付けを行った.回転角制御の可能な締付け機を 用いて二次締め回転角 180°(許容±30°)で二次

1. 概要

ナット回転法を F10T ボルトに適用する場合の必 要な条件として次の二つがあげられる.第一に,回 転法はボルト降伏点をこえる大きな軸力を与えるた めボルト自体がそれに耐えるものでなくてはならな い.第二には,実際の工事の現場締付けにおいて十 分な導入軸力が得られ,そのバラツキも少なく,さ らには他の施工性についても通常の締付け方法に比 べて劣らないことである.

技報第7号3-1-1「ナット回転法のF10Tへの適 用」(昭和49年度)ではボルト変形能および耐遅れ 破壊性能の試験より,F10Tボルトには回転法に十 分適応できるデータを得た.さらに,模型スプライ ス締付け試験において導入軸力の値は設計軸力をか なり上回っていることを確認した.

本報告はその結果をふまえ,F10T 回転法を高速 道路のランプ主桁添接部に適用し,ボルト導入軸力 の測定,締付け機器の施工性試験,遅れ破壊の観測 等を行い,実際の現場締付けにおけるF10T 回転法 の可能性を検討するとともに今後の問題点および見 通しを概説する.

2. 実験概要

以下の2種類の実験を行った.

(1) 予備試験

現場締付けに先立ち,今回の試験に使用するボル トの変形能を確認するための室内試験を行った.試 験項目は素材試験,捻り(ねじり)試験及び軸カー 歪測定試験で,各首下長さのボルトについて行われ た.

(2) 現場締付け試験

実施工工事にて,桁を地上に仮置きし以下の試験を 行った. 締めを行った.

一次締めの導入軸力は 3~10ton で模型スプライ ス試験に比べてバラツキは大きくなっている. 二次締めの導入軸力はほとんど 30ton をはるかに上 回っている.軸力のバラツキについては模型試験の 際のバラツキとほとんど同程度であると思われる. 上記の結果より,回転法では一次締めの際の導入軸 力のバラツキは二次締めの導入軸力に大きな影響を 与えないこと,さらに現場締付けにおける軸力のバ ラツキは室内におけるものとあまり差がなく,現場 施工における信頼性は十分であると思われる.なお, 二次締めの際のボルトの弛みは最大で約 2ton であ った.

(イ) 締付け時間について, 電動式のものは通常の インパクトレンチで使用した場合が約9秒/本であ ることからも施工性は十分であると思われる. 空気 式のものは回転角のバラツキが大きいことと騒音が 大きいことが難点であるが, 締付作業自体は電動式 よりは簡単であった.

(ウ)遅れ破壊については、試験後約8ヶ月間は異常が見られていない.しかし、現在まだ観測中であり今後の結果が待たれるところである.

掲載:『JSSC協会誌』(1973年 NO.9)

【概要】高力ボルト接合:ナット回転法の提案

田島二郎(本州四国連絡橋公団 設計第1部) 青木博文(横浜国立大学 建築学科) 田中淳夫(大成建設㈱ 技術研究所) 小林昌一(㈱竹中工務店 技術研究所) 北後寿(日本電信電話公社 建築局)

1. 概要

高力ボルトヘナット回転法を適用するにあたり, これまでの基準の変遷,高応力ボルトの遅れ破壊, ナット回転量とボルト軸力の関係,施工方法,施工 例について概説する.

2. ナット回転法の基準

(1) アメリカおよびイギリスの基準

トルク係数値の変動によるボルト軸力の大きなば らつきに悩まされたアメリカでは、早くからボルト の伸びと軸力との関係に着目したナット回転法の検 討が行われた.

アメリカではボルト径, 締付け長に関わらず Snug tight からの回転角が規定に定められた. ここで Snug tight とは, インパクトレンチによる 2~3 回 の打撃または普通のスパッドレンチで人が力いっぱ い締付けた状態としている.

イギリスにおいてもナット回転法は一般基準に採 用されており,1960年のB.S.3294には,継手材変 が密着するまでボルトを締付けた後の回転量が規定 されている.

(2) 日本における基準

1971年道路橋示方書では、長年にわたる F9Tの 実績、高力ボルトの遅れ破壊の研究に関する成果、 ならびにアメリカ等における 80 キロ級ボルトの多 年の経験等を参考として、高力ボルトの施工にナッ ト回転法を取り入れることにした.ただし、回転法 は F8T、B8Tのみに許され、回転量はアメリカのそ れと同じである.なお、ここで 10T ボルトまでを対 象としなかったのは、順次試用により安全性を確認 した上で一般化すべきであるとの考えから、今回の 示方書には示されなかったものである.

建築関係では、高力ボルトの締付けはなおトルク コントロール法によるものを原則としているが、「高 カボルト接合設計指針」昭和47年12月では"ナッ ト回転法、その他の方法で締付けることも可能であ るが、これらの実施については現在検討中である." と述べられている.

3. 高力ボルトの遅れ破壊

1967 年から実施された接合小委員会・ボルト強度 班の実験結果から,F8T(引張強さ 80~100kg/mm²) はナット回転法の適用は可能であると考えられ, F10T(引張強さ 100~120kg/mm²)はF8Tとほぼ同等 の性質をもつので,通常の使用条件では遅れ破壊を 生ずる可能性は少ないとしている.

ただ,アメリカにおいても A490 の歴史が A325 に 比べて短いこと,日本での回転法施工の実例がほと んどないことを考えると,F10T に対しては徐々にそ の適用を広げ,一般化への発展を期するのがよいと 考える.

4. ナット回転量とボルト軸力

「ボルトの変形特性」,「ナット回転法における締 付け目標とボルト軸力」,「2次締めで得られるボル ト軸力」について,実験結果と考察を詳述している.

5. 施工方法

前節までに述べたナット回転法に関わるわが国で

の実績,研究成果,関連規定,および諸外国の規 定等を参考として,ここでは下記の3点をナット回 転法についての施工の基準として考える.

- 対象とするボルト鋼種はF8T,B8T,F10TおよびB10Tとする.
- (2) 被締付け材は, 締付け面が平行であることを原 則とし, 締付け総厚は 200mm 以下とする.
- (3) ナット回転量は、被締付け材が密着した状態から、1/2 回転とする.ただし許容誤差範囲は±30°とする.

この指針にしたがって,高力ボルトの締付けをナ ット回転法で行うにあたっての,「1次締め」,「2次 締め」,「締付け機器」,「検査事項」を詳述している.

6. 施工例

施工例として、本州四国連絡橋の吊橋耐風性調査 のひとつとして建設された 12m×13m 高さ 14m の 2 次元耐風実験橋の装置における「使用したボルト の強度と変形性状」、「現場におけるボルト軸力の計 測」、「1/2 回転制御のインパクトレンチによる 2 次 締め」を詳述している.

【概要】ボルトの遅れ破壊

中里福和((株)住友金属小倉)

1. 概要

1991 年 4 月 1 日, 突然 NHK ニュース 21 でF11T ボルトの遅れ破壊が特別報道された.

「単重約 500g の鉄製ボルトが突然,大音響とともに 体育館の屋根から落下,こうした FIIT ボルトの突 然破壊は過去 15 年間で 8 件起こり,約 150 本が破 断している.これは遅れ破壊という現象で,水素が 関与している.詳細なメカニズムは未解明,対策と してはボルトの総取替え,定期点検,保護網設置な どである」きわめて簡潔に事象が説明されているが, 一般の人々には,ボルト使用時の危険性のみが喧伝 された嫌いがある.また上記の対策は,後手の対策 である.

本報では遅れ破壊の一般論から最近の研究開発動 向までを概説する.

2. 遅れ破壊の特徴

遅れ破壊の一般的特徴としては下記の5項目が挙 げられる.

(1) 強度レベルが高いものほど,著しくその感受性 が増大する.ボルトの場合引張強さが 1226N/mm2 を越えるものは,自然大気中においても潜在的に遅 れ破壊の危険性を秘めている.

(2) 常温近傍で発生する.しかも 100℃(373K)近傍 までは温度が高いほど感受性は増大する.

(3) マクロ的には、大きな塑性変形を伴わないで破壊する. (クリープ破壊との相違点)

(4) 静荷重(歪速度ゼロ)のもとで起こる.(疲労破壊 との相違点)

(5) 降伏強さよりかなり低い負荷応力でも起こる.

3. 遅れ破壊評価法

「環境」と表示されている影響因子を水素量として 定量化することができる.鋼材の有する耐遅れ破壊 性と実環境の苛酷さとを比較して,遅れ破壊発生有 無を推定しようとする流れであり,その多くは拡散 性水素量という指標により定量的な議論を行われる. 実環境から鋼材に侵入する水素量の定量化は,遅れ 破壊発生の可能性有無を判断する際きわめて重要な データベースとなる.

4. 遅れ破壊克服へのアプローチ

(1) 応力面

ボルトの遅れ破壊はねじ部や首下部の応力集中部か ら発生する.したがって,部位の応力集中を緩和す る方法がとられている.特に,最近では,FEM解析 が普及し弾塑性解析が行われている.ボルトに関し ては,ねじ形状の工夫により応力集中係数の低下や 有効断面積の増大が図られるようになっている. (2)環境面

ボルトを外部環境から遮断するため、一部のボルト では表面処理が行われているが、とくに電気めっ きをする場合にはめっきに付随する工程で侵入す る水素を最小限にする、あるいは脱水素処理を完 全に行わなければならない.

(3) 冷間鍛造潤滑剤・浸リン防止潤滑剤

ボルトの成形は冷間鍛造が主流となってきており, 冷間鍛造前のワイヤ潤滑処理が冷間鍛造性確保のた め必須工程である.この工程において,リン酸亜鉛 中のリン(4)が冷間鍛造後の熱処理中にボルト表層 に入込む.これにより浸入したリンは,遅れ破壊を 促進するので表層の浸リン層は有害とされている.

【概要】橋梁における高力ボルトの遅れ破壊

松山 晋作(鉄道技術研究所)

1. 概要

11T 級以下のボルトについては、に熱処理不良に よる遅れ破壊事例はあつたものの、正常な11T なら ば遅れ破壊は生じないと考えられていた.ところが、 1977 年以降規格範囲を完全に満足する F 11T ボル トの遅れ破壊事例が報告されるに及んで、11T 級で も遅れ破壊の危険性があることがわかり、1979 年の JIS 改訂時より、F11T を使用しないように勧告がな されるに至った.

本報は,過去約 15 年にわたり鉄道橋で生じた高 カボルトの遅れ破壊の事例解析を総括したものであ る.

2. 高力ボルトの使用状況と破損経過

橋梁の桁構造別にみると箱桁における損傷例が多 かつた.これは桁内部に水が溜まるために日照時に は高温高湿条件となり腐食反応が生じやすいためで ある.したがつて,箱桁には水抜き孔を設けて桁内 部が乾燥状態を保つようにすることが破損防止上必 要である.橋梁によって破損が上フランジ,ウェブ, 下フランジなどのある箇所に集中する傾向が認めら れた.この原因は明らかではないが,ボルトの遊び ねじ長さ,水滴の溜まりやすさ,温度上昇度など, ボルトの製造ロット別に生ずる材質的差異以外の要 因が考えられる.

3. ボルトの破断部位

ボルトの破断部位は不完全ねじ部が一般的には多 いが、橋梁によっては首下破断が多発する場合もあ った.規格上は、首下はねじ部より強い筈であるか ら、首下破断を生ずる理由には、第一に頭が下向き の場合首下に水滴が溜まりやすいこと、第二に首下 の丸み部に座金の角があたり荷重が集中したことが 考えられる.とくに後者の場合には座金が遅れ破壊 してボルト孔内部への水の浸入を容易にすることも あるので,座金の内側隅は十分面とりする必要があ る.

4. 最初のボルト破損を生じるまでの寿命分布

F11T を使用した橋梁で最初の破損を生ずるまで の寿命分布は母数ワイブル分布で表され,故障率が 時間と共に低下する傾向を示した.現在 F11T の使 用は中止されているから,すでに F11T を使用して いる既設の橋梁での遅れ破壊事例は今後減少傾向に あると推定される.

5. 高力ボルトの使用環境

高力ボルトを適用した初期の橋梁や遅れ破壊を発 生した橋梁についてボルトを採取して軸部の鉄さび の分析を行った.直接雨に曝された箇所や箱桁では ボルトが湿った状態にあるものが多いが,鉄さびの 組成からも水の存在が認められた.遅れ破壊は水の 存在下で腐食反応の結果生ずる水素により誘起され るもので,乾燥状態で使用されていれば遅れ破壊は 生じない.

6. 遅れ破壊感受性と材質的問題点

遅れ破壊を生じたボルトの最小硬さは HRC 37.5 であつた.従来の実験から得られた遅れ破壊を生ず る限界硬さは HRC 41 であるから, HRC<41 で破損 したボルトは材質的鋭敏化原因があつたと考えられ る.原因の検討から,熱処理炉の雰囲気は脱炭傾向 にすること,可能な限り低燐の高純度鋼を用いるこ と,B添加は必要最少量にすることなどが高力ボル トの信頼度を高めるために必要であると結論される. しかし市販鋼では高純化には限度があるから粒界炭 化物が十分凝集するまで焼もどし温度を高めること が必要である.

【概要】高力ボルトの遅れ破壊に影響を及ぼす侵入水素量の確率論的評価

松岡 和巳(工博 新日鉄住金(株)) 秋山 英二(理博 (株)物質.材料研究所) 松山 晋作(工博) 宇野 暢芳(工博 日鐵住金建材(株)) 萩原 行人(工博) 原田 宏明((株)NS ボルテン)

1. 概要

高力ボルトは使用環境に応じた腐食を受け、その 結果発生した水素が鋼中に侵入して応力集中部に集 積する.高力ボルトの遅れ破壊は、この集積した水素 によって応力集中部周辺の鋼材の破壊強度が低下し て、作用している応力に抵抗できなくなることで発 生すると考えられている.

本論文の目的は、この侵入水素量 He の確率分布を 決定し、最終的に屋外環境の腐食強度の指標である pH 範囲を推定することにある.pH 範囲を決定でき れば、室内試験のみで He の把握が可能となり、長 期間を要する暴露試験を経ないで、短期間で合理的 な遅れ破壊判定が実施可能となる.

2. 暴露試験の概要

用いた材料は現在建設分野で使用されている F10T ボルト用鋼のボロン鋼と機械分野で代表的な ボルト用鋼のクロムモリブデン鋼の SCM435 鋼で ある.暴露本数は各鋼種とも 250 本ずつで,直径 22mm の JIS メートルねじ形状のボルトを板厚 45mm の鋼板(SS400)に,ねじ部有効断面の公称応 力で引張強さの 82%をねらいにナット回転法で締 め付けている.

暴露場所は沖縄県宜野湾市にある工場の屋上(海岸 から約 50m)と茨城県つくば市の建築研究所内の暴 露サイト(海岸から約 35km)の 2 カ所である.腐食環 境としては沖縄の方がつくばより厳しく, A13 鋼の 腐食量は沖縄がつくばの約5倍である.

3. 結論

各種ボルト試験材を用いた暴露試験の累積破断 率および試験材のCSRT試験の統計解析結果を用い て,暴露ボルトの遅れ破壊を生じさせる局所最大応 力部における局所侵入水素濃度 He の確率分布,お よびこれを模擬する屋外環境強度の指標である鋼材 の表面 pH の範囲について確率論的に評価した結果, 以下のことが結論づけられる.

(1) 遅れ破壊の累積破断率を破壊確率として捉えて, 破壊確率計算式を用いて局所侵入水素濃度を評価す る手法は,局所侵入水素濃度 He の確率分布を評価 すること,及び屋外環境強度の指標である鋼材表面 pH の範囲を推定することを可能とし,有効な手法 であることが示された.

(2) 沖縄暴露環境で錆の影響を受けて鋼材に侵入す る局所侵入水素濃度 He や侵入水素量 He の最大値 を模擬する腐食溶液の pH は, pH2 弱に対応してい ると考えられる. 揭載: 『日本建築学会構造系論文集』(1996年12月 第490号)

【概要】高力ボルトの遅れ破壊に関する実験的研究

(その1 限界拡散性水素濃度法の提案)

平井 敬二(西日本工業大学建築学科 教授・博士)

脇山 広三(大阪産業大学工学部環境デザイン学科教授・工博)

宇野 暢芳(工修 新日本製鐵(株))

1. 概要

現在のJISにおいて,F11T は使用環境によって は遅れ破壊の可能性があると言うことで括弧つきの 表現になっている.従って,現在,高力ボルトは F10T,F8Tの2 種類が主となっている.JIS原案 による方法では,遅れ破壊に大きな影響を及ぼす拡 散性水素と遅れ破壊感受性の関係は明確に把握でき ない.この拡散性水素を鋼材の遅れ破壊に対する感 受性の評価に用いるような遅れ破壊促進試験法が確 立されれば,より高強度の高力ボルトの開発に際し 非常に有用なものとなると考えられる.

鋼材中の拡散性水素を考慮した促進試験として鈴木 信一博士らは引張型の試験片及び手順で数多くの試 験を行っている.本論ではこの促進試験法の考え方 を基にして載荷装置,試験片製作,試験手順等の簡 便さを考慮にいれ,引張型ではなく角棒による曲げ 型の試験法(以降,限界拡散性水素濃度法)を提案 し,同法を用いて行った促進試験結果について述べ る.

2. 結語

(1 本論にて提案する限界拡散性水素濃度法により 得られる限界拡散性水素濃度により,遅れ破壊感受 性が評価出来ることを示した.また,試験片の切欠 き形状が異なればHcの値は異なり,応力集中係数の 大きい試験片シリーズに関するHcの値が小さくな る傾向が認められることを示した. (2) 市販されている F10T 高力ボルトより削り出し た製造ロットの異なる 10 種類の試験片について同 法による試験を行った結果,同じ F10T の高力ボル トでも製造ロットが異なれば Hc の値は異なり,本試 験範囲では最低の Hc の値と最大の Hc の値を比較す ると約2倍弱の値のバラツキが認められることを示 した.

(3) 高強度試作ボルトに関する試験結果より,現在 の塩酸浸漬による水素チャージ法では,これら鋼材 に関する正確なHcの値が把握できず,より多くの水 素がチャージ出来る電解チャージ等による方法を用 いて試験を行う必要があることを示唆した.

【概要】高力ボルトの遅れ破壊に関する実験的研究

(その2 暴露試験)

平井 敬二(西日本工業大学建築学科 教授・博士) 宇野 暢芳(工修 新日本製鐵(株)) 脇山 広三(大阪産業大学工学部環境デザイン学科教授・工博) 宮川 敏夫(日鐵ボルテン(株))

1. 概要

本論では前報の限界拡散性水素濃度法による試験 結果より,遅れ破壊に対する感受性が通常の F10T 高力ボルト用鋼材と同等かそれ以下で,遅れ破壊し にくいと評価された 2 種類の鋼材を用いて製作し た約 1500N/mm2 級の引張強度を有する高力ボルト (超高強度ボルト)について行った暴露試験について 述べる.

2. 供試ボルト

試験に用いた試作の超高強度ボルトセットの形状 は当初 JIS 形の六角ボルトセットであったが、実用 性を考え最終的にはトルシア形のボルトセットとな っている。遅れ破壊が生じやすい部分である. 首下 R 部は 2.5R で通常の JIS 形状の 1.0~2.0R に比べ 若干大きくなっている. また不完全ねじ部では軸部 への移行部を設けており,首下や不完全ねじ部での 応力集中を緩和している.

本試験では超高強度ボルトとの比較検討用の供 試体として,通常の環境では遅れ破壊しないと考え られている JISB1186 に規定される F10T 高カボル トセットと,JSS II O9 に規定され,現在日本の建築 分野で最も多く使用されているトルシア形の構造用 高力ボルトセット(S10T)を使用する.

3. 結語

1500N/mm2 級の超高強度ボルトにっいて促進暴 露試験および実暴露試験を行い.遅れ破壊の有無を 確認するとともに試験体パラメータが遅れ破壊に与 える影響を考察した. (1) ナット回転法により締め付けた供試体ではナット回転量の大きい方が初期破断日数は短くなり遅れ 破壊が早く発生し,また遅れ破壊発生率は高くなる 傾向が認められる.

(2) ポンデ処理後の熱処理によるボルトへの浸リン 現象が遅れ破壊に与える影響の有無をポンデ被膜の 有無で調べたが,ブラスト処理を施し,ポンデ被膜 のない方が初期破断日数は長くなり,遅れ破壊の発 生が生じるのを遅らす傾向は認められるが,最終的 な遅れ破壊発生率には有意差は認められない.

(3) 同一鋼より製作した供試体では基本的に引張強度の高いほど初期破断日数は短く遅れ破壊が生じやすくなり,遅れ破壊発生率も高くなる傾向が認められるが,促進暴露試験では他の因子も影響して必ずしも引張強度の高い方が遅れ破壊発生率は高くはなっていない.実暴露試験では同一の暴露経過時点で比較すると明瞭に引張強度の高い方が遅れ破壊発生率は高くなる傾向が認められる.

(4) 鋼種の違いの影響は大きく Y 鋼の場合, 引張強度 1333N/mm2 の供試体シリーズ(AY61CB5)で観覧車による 194 日の促進暴露経過時で 25%の供試体において遅れ破壊が発生しているが, Z 鋼の場合,引張強度が 1440N/mm2 の供試体シリーズ(AZ6DCB)では 2355 日の促進暴露経過時点でも一体も遅れ破壊は発生していない.

揭載: 『日本建築学会構造系論文集』(2002年10月 第560号)

【概要】高力ボルトの遅れ破壊に関する実験的研究

(その3 ボルトに侵入する拡散性水素及びボルト張力)

平井 敬二(西日本工業大学建築学科 教授・博士)

宇野 暢芳(工修 新日本製鐵(株))

1. 概要

遅れ破壊は鋼材中に侵入した拡散性水素に主として 起因すると考えられている. 限界拡散性水素濃度法 で得られた限界拡散性水素濃度の値は、鋼材間の遅 れ破壊感受性に対する相対評価を与えるには非常に 有効である.しかし、現時点では鋼材の限界拡散性 永素濃度の値が得られていてもその値だけでは製作 されたボルトが遅れ破壊するかどうかの評価には直 接結びつかない. 限界拡散性水素濃度の値と遅れ破 壊の有無を結びつけるためには、そのボルトに対し 実際の使用環堤中で時間経過とともにどの程度の拡 散性水素が侵入するのかを把握したデータが必要に なる.暴露時間の経過とともにボルトへの導入張力 がどのように変化するかについて追跡することは、 その暴露試験の有効性を確認するために必要であり, さらには暴露環境下での高力ボルト接合部の耐力を 評価する際の有用なデータともなる.本論では江藤 式観覧車と屋外暴露試験実施中の福岡(行橋)を除く 3ヵ所および新しく追加した2カ所での屋外暴露環 境下に設置された試験体で測定した残留ボルト張力 についても併せて述べる.

2. 結語

(1)ボルトへの侵入水素量の観点から見れば, 観覧車 による暴露試験は屋外暴露試験の福岡(蓑島)と同 程度,・沖縄, 北海道の約10倍, 東京の約20倍程 度の促進性があると考えられる.

(2)ボルト全体で測定した場合とボルトを分割して 部分的に測定した場合のボルトへの侵入水素量の濃 度の値を比較すると,観覧車や福岡の蓑島における ような厳しい環境の場合には,全体で測定した値と, 部分的に測定した中での最大値には殆ど有意差は無いが,環境が比較的緩やかな場合には,部分的に測定した最大値の方が全体で測定した場合の値より大きくなる傾向が認められる.

(3) 観覧車による Z 鋼の超高強度ボルトシリーズ (AZ47CB)への侵入水素量は暴露開始直後には経 過時間とともに直線的に増加し,130 週経過後の 1.8ml/100g 程度でほぼ横這い状態となり,増加傾 向は止まっている.また,沖縄での同シリーズ

(OZ46CB)では,100週までは徐々に増加し,その後250週経過時点まで05ml/100g程度の侵入量のまま殆ど増加していない.

(4) 前報(その 1)で基本概念を示した限界拡散性水 素濃度法による限界拡散性水素濃度(Hc)の値にほ ぼ等しい拡散性水素がボルトに侵入すれば遅れ破壊 が発生するものと考えられる.ボルトに侵入した拡 散性水素量(H),限界拡散性水素濃度(Hc),遅れ 破壊の発生の有無をさらに正確に関連づけるために は、ボルトのどの部位でどの程度の分割の大きさで 侵入水素の測定部位を行うのか、試験体の回収時期 等種々の問題は残っているものの、遅れ破壊発生の 有無は限界拡散性水素濃度と侵入拡散性水素量との 関連で推定できるものと考える.

(5)観覧車試験による暴露試験体でのボルト張力は 暴露開始直後より減少し大溝付きの試験体のボルト 張力の方が通常の小溝付きの試験体のボルト張力よ りも大きな減少量が認められる.恒温室に設置し, 錆の発生が全く認められない試験体のボルト張力の 減少量が通常のリラクセーションによる減少量と差 がないことまた,SS400板とSUS304板での残留張 力に有意差が認められないことを考慮すると,ボル ト張力の減少は主としてボルトの腐食に起因してい ると考えられる.

(6) S10T(X 鋼 1039N/mm2)と超高強度ボルト(Z 鋼 1431N/mm2)でのボルト張力減少量に有意差は 認められず,環境の厳しい観覧車暴露試験では,約 1年経過後で暴露開始時点より20%程度の張力減少 が認められる.一方,通常の屋外暴露環境では沖縄 のような厳しい環境下でもボルト張力減少量は2年 経過時点で10%弱である.これは通常のリラクセー ションでも認められる程度の張力減少である.この ことより,本試験における屋外暴露試験結果は遅れ 破壊評価に対するデータとして有効性が認められる.

【概要】高力ボルトの遅れ破壊強度と熱処理

福井 彰一(大同製鋼(株)研究開発本部中央研究所)

1. はじめに

鋼構造物の接合方法として古くから行われてき たリベットによる接合に代わって,近年では設計に もまた施工にも多くの利点をもつボルトによる摩擦 接合が多く用いられるようになっている.摩擦接合 とうは,接合すべき主板に添接板を添えてボルトで 締付け,主板と添接板との間に生ずる摩擦力によっ て主板間に力を伝達するものであるからボルトの締 付力が大きいほど効率の良い接合ができるわけであ る.そこで高強度のボルトが要望され,1964年には 摩擦接合用高力ボルトとして引張強さ70kg/mm²か ら 130kg/mm²威容までの4種類の強度レベルのボ ルトが日本工業規格として規格化された.

ところで, 引張強さ 180kg/mm2 級の超強靭鋼で は, 定常的な高応力を付加しておくと, ある程度の 時間をへてから突然脆性破断するいわゆる遅れ破壊 現象を呈することが知られている. この遅れ破壊に わずかでも水分が含まれると著しく促進され, 環境 中の水分から鋼に侵入した水素によって起こされる ものと考えられている.

ボルトの遅れ破壊は構造物の安全性からみても きわめて重要な問題であり、日本構造協会で共同研 究も行われたが、本稿では遅れ破壊の見地からおも にボルトの熱処理に配慮すべきいくつかの問題点を 取り上げその対策について論ずる.

2. むすび

鋼の遅れ破壊強度の変化挙動はその焼きもどし 温度によって4つの領域に分けられる.最も遅れ破 壊感受性が小さく,遅れ破壊に対して安定なのは焼 もどし温度の高い第4領域(500℃~)で処理した状 態である.高強度のボルトを得ようとすると特別に 工夫された鋼を用いる必要がある.現在では F12T までの高力ボルト用鋼が開発されている.さらに高 強度のボルトをえようとするとオーステンバー処理 のような特殊な処理を行えば F13T 級の強度として 遅れ破壊に対して安定な状態とすることができる.

低炭素鋼を 200℃付近の低温度で焼もどしすると 経済的に F13T 級の高強度を得ることができる. チ タン・ボロンなどの特殊元素の添加により比較的遅 れ破壊強度の高い状態が得られるが,これは第4領 域で焼もどしたものに比べてまだいくぶん遅れ破壊 限度比が小さいので,この状態が置く力ボルトとし て安全化同化は今後なお実用面での検討をようする.

ボルトの熱処理の実用面における問題として不 完全焼入れと脱炭あるいは侵炭の影響について述べ ており、不完全焼入れされたものは焼もどし温度が 低目となるので遅れ破壊の点からは危険である.ま た侵炭傾向の処理はとくに焼もどし温度が低目に選 ばれる鋼に対して危険性が大きい.

Ⅲ. ボルト施工基準に関する検討WG

ボルト施工基準に関する検討

ボルト施工基準に関する検討WGメンバー

WGリーダー	田村	洋	横浜国立大学
幹事長	内田	大介	法政大学
部会員	茂呂	充	(株)長大
11	吉岡	夏樹	(株) 駒井ハルテック
]]	濱	達矢	(株) 三井 E&S 鉄構エンジニアリング

ボルト施工基準に関する検討 WG 目次

1.	接触	・面数に応じた導入ボルト軸力に関する検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	1
	1-1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	1
	1-2	試験体とその製作状況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	4
		1-2-1 使用材料 · · · · · · · · · · · · · · · · · · ·	Ⅲ-1-	4
		1-2-2 試験体の種類 · · · · · · · · · · · · · · · · · · ·	Ⅲ-1-	5
		1-2-3 試験体の継手形式と形状	Ⅲ-1-	6
		1-2-4 摩擦面処理 · · · · · · · · · · · · · · · · · · ·	Ⅲ-1-	7
		1-2-5 ボルトの締付け ・・・・・	Ⅲ-1-	9
	1–3	接触面数と導入軸力量に関する検討(シリーズ I) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	10
		1-3-1 接触面数と導入軸力が軸力低下に及ぼす影響	Ⅲ-1-	10
		(1) リラクセーション試験方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	10
		(2) リラクセーション試験結果 · · · · · · · · · · · · · · · · · · ·	Ⅲ-1-	11
		(3) 接触面数および膜厚の影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	15
		(4) 導入軸力の影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	15
		1-3-2 接触面数とボルト軸力がすべり係数に及ぼす影響	Ⅲ-1-	16
		(1) すべり耐力試験の方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	16
		(2) すべり耐力試験の結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	17
		(3) 偏心の影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	19
		(4) 接触面数およびボルト軸力の影響	Ⅲ-1-	20
	1-4	接触面数と無機ジンクの膜厚に関する検討(シリーズ II) ······	Ⅲ-1-	21
		1-4-1 接触面数と無機ジンクの膜厚が軸力低下に及ぼす影響	Ⅲ-1-	21
		(1) リラクセーション試験方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	21
		(2) リラクセーション試験結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	22
		(3) 接触面数および膜厚の影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	24
		1-4-2 接触面数と無機ジンクの膜厚がすべり係数に及ぼす影響	Ⅲ-1-	25
		(1) すべり耐力試験の方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	25
		(2) すべり耐力試験の結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	25
	1–5	接触面に応じた導入ボルト軸力の考察	Ⅲ-1-	28
		1-5-1 既報の試験結果との比較 · · · · · · · · · · · · · · · · · · ·	Ⅲ-1-	28
		1-5-21 万時間後の軸力残存率の推定	Ⅲ-1-	29
		1-5-3 接触面数を考慮した導入ボルト軸力の提案	Ⅲ-1-	31
	1–6	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-1-	32
	第1	章 参考文献 · · · · · · · · · · · · · · · · · · ·	Ⅲ-1-	32
	第1	章 付録	Ⅲ-1-	34

2.	異種接合面継手に関する先行研究と採用実績の調査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-2-	1
	2-1 はじめに	Ⅲ-2-	1
	2-2 異種接合面継手の定義と分類	Ⅲ-2-	1
	2-3 異種接合面継手に関する文献調査	Ⅲ-2-	2
	2-3-1 文献調査の方法 · · · · · · · · · · · · · · · · · · ·	Ⅲ-2-	2
	2-3-2 文献調査の結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-2-	2
	2-4 異種接合面継手に関する施工の実績調査	Ⅲ-2-	4
	2-4-1 実績調査の方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-2-	4
	2-4-2 実績調査の結果 · · · · · · · · · · · · · · · · · · ·	Ⅲ-2-	4
	2-4-3各接触面の現場施工に関する調査の方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-2-	5
	2-4-4各接触面の現場施工に関する調査の結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-2-	5
	2-5 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-2-	6
	第2章 参考文献······	Ⅲ-2-	6
	第2章 付録 先行研究で報告されている異種接合面継手の実験データ	Ⅲ-2-	7
3.	異種接合面継手の適用性に関する実験的検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	1
	3-1 はじめに	Ⅲ-3-	1
	3-2 本研究における対象継手と接触面処理	Ⅲ-3-	1
	3−2−1 試験体諸元 · · · · · · · · · · · · · · · · · · ·	Ⅲ-3-	1
	3−2−2 接触面処理 · · · · · · · · · · · · · · · · · · ·	Ⅲ-3-	4
	3-2-3 ボルト締め・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	8
	3-3 異種接合面継手のボルト軸力推移(シリーズ I) ·····	Ⅲ-3-	8
	3−3−1 リラクセーション試験の方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	9
	3−3−2 リラクセーション試験の結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ш-3-	9
	3-3-3 ボルト軸力低下の支配因子 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	11
	3-4 異種接合面継手のすべり挙動(シリーズ I) ・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	12
	3-4-1 すべり耐力試験の方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	13
	3-4-2 すべり耐力試験の結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	13
	3-4-3 観察されたすべり性状 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	15
	3-4-4 すべり係数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	20
	3-5 異種接合面継手のボルト軸力推移(シリーズ II)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	24
	3-5-1 リラクセーション試験の方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	24
	3-5-2 リラクセーション試験の結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	24
	3-5-3 ボルト軸力低下の支配因子 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	26
	3-6 異種接合面継手のすべり挙動(シリーズ II)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	26
	3-6-1 すべり耐力試験の方法	Ⅲ-3-	26
	3-6-2 すべり耐力試験の結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	27
	3-6-3 得られたすべり係数	Ⅲ-3-	29

3–7	異種接合面	i継手の適用性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	32
3	-7-1 タイフ	<i>в</i> А	Ⅲ-3-	32
3	-7-2 タイフ	в	Ⅲ-3-	33
3–8	まとめ・・・		Ⅲ-3-	34
第3章	重 参考文南	武 · · · · · · · · · · · · · · · · · · ·	Ⅲ-3-	35
第3章	重 付録1	表面粗さ評価値に及ぼす評価長さの影響・・・・・・・・・・・・・・・・	Ⅲ-3-	36
第3章	章 付録 2	すべり耐力試験データ(シリーズ I) ・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	39
第3章	貢 付録 3	すべり耐力試験データ(シリーズ 11) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	56
第3章	重 付録4	荷重-母板ひずみデータ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ⅲ-3-	67

1. 接触面数に応じた導入ボルト軸力に関する検討

1-1 はじめに

現行の道路橋示方書¹⁾(以下,道示)および鉄道構造物等設計標準²⁾(以下,鉄道標準)において,高 カボルト摩擦接合継手(以下,ボルト継手)を用いる場合,摩擦面の処理は,黒皮を除去した粗面状態 (以下,粗面状態)および厚膜型無機ジンクリッチペイント(以下,無機ジンク)を塗布した摩擦面を 基本としている.これらの基準において,無機ジンクの適用が許容されたのは,道示ではH2年度³⁾,鉄道 標準ではH4年度⁴⁾からであり,それ以前はグリッドブラスト処理(以下,ブラスト)や赤錆状態といった 粗面状態のみであった.そして,H24年度の道示⁵⁾で摩擦面に所定の条件で無機ジンクを塗布した場合の すべり係数が0.45と規定され,粗面状態の0.4よりも大きくなったこともあり,現在の鋼橋製作の現場に おいて,新設構造物では,そのほとんどが無機ジンクを塗布した摩擦面を適用している.

高力ボルトの導入軸力について, 締付け方法としては一般に, トルク法が用いられている. 道示¹⁾や鉄 道標準²⁾では, トルク法でのボルト締付けに対して, 設計ボルト軸力に対して10%増しの締付けを規定し ている. これは, トルク係数値やすべり係数のばらつき, クリープやリラクセーションなどの影響を考 慮したものであり, 無機ジンクの適用が許容された後も変わることはなかった.

既往の研究⁶⁾では、リラクセーションによるボルト軸力の低下は、摩擦面の処理が粗面状態の場合、締 付け1年後には約4%となり、残り約6%でトルク係数値やすべり係数のばらつき等の影響を考慮できるこ とが示されている.しかしながら、摩擦面に無機ジンクを塗布した場合には、粗面状態と異なり、締付 け1年後には約11%ボルト軸力は低下し、10%増し締めではトルク係数値やすべり係数のばらつきなどそ の他の影響をボルト軸力では考慮仕切れないことも確認されている.また、無機ジンクの塗布量につい ては、塗布した場合のリラクセーションは膜厚が厚くなるほど大きくなるということも報告されている⁷.

文献6),8)では、無機ジンクを塗布した場合には、設計ボルト軸力の15%増し締めで行えば、軸力低下後の残存軸力は粗面状態と同等となり、ボルト継手の安全性・信頼性が向上することが示されている.ただし、このような増し締めに関する議論は、フィラープレート(以下、フィラー)の挿入がなく、かつ2面摩擦(図1-1-1(b)参照)のボルト継手を前提としている.フィラーを挿入したボルト継手(図1-1-1(c)(d)参照)については、これまですべり耐力試験は実施されてきたが⁹⁾⁻¹²⁾、無機ジンクを塗装した継手のリラクセーションによる軸力低下については明確にされていない.この軸力低下は摩擦面の数にも影響を受けると考えられ、フィラーを挿入すれば実質的な摩擦面数は増加し、軸力低下が大きくなると推察される.逆に、1面摩擦(図1-1-1(a)参照)では、2面摩擦より軸力低下が小さくなると予想されるが、どの程度の軸力低下となるのかは不明である.さらに、これらの影響を考慮して導入軸力を変化させた検証は、これまで実施されていなかった.

(a) 継手形式1(1面摩擦)

本検討は、ボルト継手の安全性・信頼性を向上させることを目的とし、供用後も所定のボルト軸力を 確保するための摩擦接合面に応じたボルト導入軸力を検討することを目的とした。そのために、大きく 分けて2種類の検討を行った。シリーズIでは図1-1-1に示した摩擦面数の異なる4種類の継手形式を 対象に、摩擦面に塗布する無機ジンク厚を標準膜厚(道示¹⁾の条件の中央値)となる75µmを目標として 試験体を製作し、リラクセーション試験およびすべり耐力試験を実施した。

シリーズ II では、図 1-1-1(b) ~ (d) に示す継手形式 2~4 の 3 種類について摩擦面に塗布する無機ジン ク厚に着目し、塗布する膜厚の目標を道示¹⁾の条件の下限(50µm)と上限(100µm)とした試験体を製 作した.そして、リラクセーション試験およびすべり耐力試験を実施した.

最後にシリーズ I とシリーズ II の検討結果について、これまで実施された既存のリラクセーション試験結果との比較も行い、摩擦接合面の違いによる軸力低下の実態を明確にした上で、摩擦面数に応じた 導入軸力を提案した.

1-2 試験体とその製作状況

本節では、シリーズ I とシリーズ II の検討で用いた試験体とその製作状況として、使用材料、試験体の種類、継手形式、形状、摩擦面処理、ボルト締付け方法について述べる.

1-2-1 使用材料

試験体に使用した鋼材および高力ボルトの材料特性をそれぞれ表 1-2-1,表 1-2-2 に示す. 母板および 連結板には板厚 12, 19, 25mm の SM490Y を使用し,フィラーは 3.2, 6mm の SS400 を用いた. ボルト は F10T(M22)とした. また, PA, PB シリーズにおける 3.2 mm のフィラーはミルシートがなく,材質・ 強度ともに不明である.

Am	板厚	機	械的性質			化	学成分	(%)		
鋿尰	(mm)	降伏強度 (N/mm ²)	引張強度 (N/mm ²)	伸び (%)	С	Si	Mn	Р	S	適用場所
S\$400	3.2	288	441	40	0.15	0.03	0.47	0.014	0.007	継手形式4の フィラープレート
35-00	6	337	446	31	0.13	0.20	0.65	0.021	0.005	継手形式3の フィラープレート
SM490YA	12	430	519	23	0.15	0.19	1.10	0.011	0.005	継手形式2,3,4の 連結板
SM400VB	19	437	530	23	0.15	0.19	1.08	0.023	0.007	継手形式3,4の 母板
5w17901D	25	434	527	25	0.15	0.17	1.08	0.015	0.004	継手形式1,2,3,4の 母板

表 1-2-1 使用鋼材の機械的性質および化学成分 (a) P, B シリーズ

(h	DA	PR	21	I — 7°
(D)	PA,	٢D	ン	ノーへ

here of the	板厚	機	械的性質			化	学成分	(%)		
鉤植	(mm)	降伏強度 (N/mm ²)	引張強度 (N/mm ²)	伸び (%)	С	Si	Mn	Р	S	適用場所
SS400	3.2	ミルシート未入手						継手形式4の フィラープレート		
	6	378	542	27	0.17	0.44	1.46	0.013	0.004	継手形式3の フィラープレート
SM400V	12	434	565	25	0.16	0.27	1.39	0.022	0.005	継手形式2,3,4の 連結板
514904	19	446	565	28	0.16	0.32	1.42	0.014	0.003	継手形式3,4の 母板
	25	451	560	23	0.17	0.3	1.38	0.008	0.003	継手形式2,3,4の 母板

		关下	古林		ボルト							lah	
等級	ボルト径	目下 長さ	断面積		4号試験片			製品	1	製品	製品	トルク 係数値	備考
		(mm)	(mm ²)	降伏強度 (N/mm ²)	引張強度 (N/mm ²)	伸び (%)	絞り (%)	引張荷重 (kN)	硬さ (HRC)	硬さ (HRC)	硬さ (HRC)	(平均値)	
F10T	M22	90	303	1,030	1,071	19	69	330	33	27	40	0.131	P,Bシリーズ
F10T	M22	90	303	1,008	1,062	18	69	328	32	26	38	0.135	PA,PBシリーズ

表 1-2-2 使用ボルトの機械的性質とトルク係数値

1-2-2 試験体の種類

試験体の種類を表 1-2-3 に示す. 試験体のパラメータは, ①摩擦面処理(無機ジンク 50・75・100μm, ブラスト), ②継手形式(摩擦面数, フィラーの有無; 図 1-1-1 参照)および③増し締め率(10・15・ 20%)とし, 試験体は 18 種類とした. 試験体は各種 3 体製作したため, その総数は 54 体である. 表中の 継手形式と摩擦面処理, 増し締め率については, 以降の節で説明する.

なお、本試験ではまずシリーズ I として、P および B シリーズのすべり耐力試験を実施した後、別研 究のすべり耐力試験に使用した鋼板を再度素地調整および塗装し、シリーズ II として、PA・PB シリーズ の試験体製作および試験を実施した.

試験体名	①摩擦面処理	②継手形式	すべり降伏 耐力比β	③軸力の 増し締め率
P1-15		継手形式1 (1面摩擦)	0.31	15%
P2-15		継手形式2 (2面摩擦)	0.61	15%
P3-15	無機ジンクリッチペイント	継手形式3	0.81	15%
P3-20	75µm	(2面摩擦, フィラー1枚)	0.84	20%
P4-15		継手形式4	0.81	15%
P4-20		(2面摩擦, フィラー2枚)	0.84	20%
B1-10		継手形式1 (1面摩擦)	0.24	10%
B2-10		継手形式2 (2面摩擦)	0.49	10%
B3-10	_~	継手形式3	0.64	10%
B3-15	フラスト	(2面摩擦, フィラー1枚)	0.68	15%
B4-10		継手形式4	0.64	10%
B4-15		(2面摩擦, フィラー2枚)	0.68	15%
PA2-15		継手形式2 (2面摩擦)	0.61	15%
PA3-15	無機ジンクリッチペイント 50um	継手形式3 (2面摩擦, フィラー1枚)	0.81	15%
PA4-20		継手形式4 (2面摩擦, フィラー2枚)	0.84	20%
PB2-15		(2) 面摩擦) (2) 面摩擦)	0.61	15%
PB3-15	無機ジンクリッチペイント 100um	(2面摩擦 フィラー1か)	0.81	15%
PB4-20		(2面摩擦, フィラー2枚) 継手形式4	0.84	20%
		(=四/手)示, / 1 / 4(次)		

表 1-2-3 試験体の種類とパラメータ

1-2-3 試験体の継手形式と形状

図 1-1-1 に対象とする継手形式を示す. 継手形式1は1面摩擦, 継手形式2は2面摩擦, 継手形式3 はフィラー1 枚が挿入された2面摩擦, 継手形式4はフィラー2枚が挿入された2面摩擦である. 継手形 式3は板厚変化部で広く用いられる形式であり, 継手形式4は鈑桁のウェブや箱桁の縦リブ等の接合部 で板厚の中心を合わせるときに用いる継手形式である. 継手形式3および4は2面摩擦に分類されるが, 実質的な摩擦面の数はそれぞれ3と4である. そこで本報告書では, 誤解を招かないようフィラー1枚を 接触面数3, フィラー2枚を接触面数4とし, 以降は実摩擦面の数を接触面数と呼ぶこととする.

試験体は、すべり降伏耐力比βが最も大きくなる継手形式3および4のフィラー付き試験体の寸法(板厚,板幅)が標準試験片寸法¹³⁾と一致するよう設計した.また、本研究ではボルト軸力の低下に及ぼす 接触面数の影響を評価することを目的としており、ボルト首下長さの影響を排除させるため、使用した ボルトはすべての試験体でボルト首下長さ90mmに統一した.このため、継手形式3,4よりすべり側の 母板厚が大きい継手形式1および2のすべり降伏耐力比βは小さくなった.各試験体ともに標準孔を用 い、ボルトピッチ(*P*)や縁端距離(*e*)は、標準試験片¹³⁾と一致させた.また、継手形式1および3について は、載荷試験機で両端を掴めるよう平板を溶接し合計厚をそろえた.

1-2-4 摩擦面処理

無機ジンクの摩擦面処理では、図 1-2-1 に示すように、ブラストによる素地調整を行った後に、無機 ジンクを目標膜厚 P シリーズ: 75µm, PA シリーズ: 50µm, PB シリーズ: 100µm で塗布した. ブラスト の摩擦面処理は、黒皮を除去した粗面状態を想定しており、図 1-2-1 に示す素地調整のみを行ったもの である.図1-2-2 に無機ジンクの塗装状況を示す.

図 1-2-1 無機ジンク試験体の作業手順

図 1-2-2 無機ジンクの塗装状況

摩擦面の処理状態を把握するために、ボルト孔周辺(図1-2-3)に対して、表面粗さ計測と無機ジンクの 膜厚計測を行った.表面粗さ計測には表面粗さ計(SJ-210)を用いて、P3-15、20のすべてのフィラーを対 象に評価長 8mm で十点平均粗さ(Rzjis)を求めた. 膜厚計測には電磁誘導式膜厚計(膜厚計 SWT-9300) を用い、無機ジンクの試験体においてすべり側(すべり耐力試験においてすべらせる側、図1-1-1の各 図右側)のすべてのボルト孔周辺を計測した.

PA, PB シリーズでは,粗さは同様の計測器で各試験体1体ずつとし,連結板は母板との接触面,母板およびフィラーは両面,すべり側を計測した. 膜厚は電磁誘導式膜厚計(膜厚計 SWT-9100)を用い,すべての試験体の両面,すべり側を計測した.

表面粗さ測定結果を図1-2-4に示す. 無機ジンクはブラストよりも Rzjis の平均値は低いものの, ばら つきは大きいことが示されている. また, 膜厚ごとに比較すると膜厚が薄くなるほど, 最大値が高くな っている.

膜厚計測結果を図 1-2-5 に示す.計測箇所に対するそれぞれの膜厚平均値は P シリーズ:83μm, PA シリーズ:59μm, PB シリーズ:108μm であり、多少のばらつきはあるが、それぞれの目標膜厚に近い値 であることを確認した.図1-2-5(b)(e)は P, PA および PB シリーズの塗装厚を試験体ごとに整理した結 果であるが、試験体別にみると、試験体 P1-15、P2-15 では平均膜厚は 90μm を超え、平均値の最大と最 小で約 20μm の違いが生じていた.同様に PA シリーズでは 11μm、PB シリーズでは 31μm の違いが生じ ていた.

図 1-2-3 表面粗さおよび膜厚の計測位置

図 1-2-5 ボルト孔周辺における膜厚の測定結果

1-2-5 ボルトの締付け

ボルトの締付けはトルク法で実施した.導入軸力の設定にあたって,無機ジンクでは既往の研究⁶に示 される軸力低下^{6),8)}を考慮し,増し締め率15%を基本とした.ブラストでは,道示¹⁾および鉄道標準²⁾に 則り,増し締め率10%を基本とした.なお,接触面数の多い試験体については,摩擦面処理に関わらず, さらに5%増し締め率が高い20%のケースも設定した. 締付けの際は、一次締めは設計ボルト軸力の 60%、本締めは導入軸力が表 1-2-3 に示した増し締め率 を考慮した値になるようにトルクレンチを用いて締め付けた.なお、試験体の固定側(すべり耐力試験 においてすべらせない側、図 1-1-1 の各図左側)のボルトについては、表 1-2-3 で示した増し締め率を 考慮した導入軸力からさらに 20kN 増し締めした.

1-3 接触面数と導入軸力量に関する検討(シリーズ I)

シリーズ I では図 1-1-1 に示した摩擦面数の異なる 4 種類の継手形式を対象に, 摩擦面に塗布する無機ジンク厚を道示¹⁾の条件の中央値となる 75µm を目標として試験体を製作し, リラクセーション試験およびすべり耐力試験を実施した.

1-3-1 接触面数と導入軸力が軸力低下に及ぼす影響

本項では、はじめにシリーズ I におけるリラクセーション試験方法を説明し、試験結果に基づいて、 接触面数とボルト導入軸力がその後の軸力低下に及ぼす影響について考察する.

(1) リラクセーション試験方法

リラクセーション試験は、ボルト締付け時点から 28 日間(672 時間)行った. 試験対象は、すべり側の合計 72 本のボルトとし、ボルト軸力をひずみゲージ(ゲージ長 5mm)により計測するため、ボルト頭にリード線を通すための孔を明け、ボルト軸部(母材板厚の中央位置)にひずみゲージ 2 枚を取付けた(図 1-3-1). このゲージ 2 枚の出力の平均値を軸ひずみとし、これに換算率を乗じることで軸力を取得した. 換算率は、事前に各ロット 3 本のボルトについてキャリブレーション試験を行い決定した. キャリブレーション試験結果を表 1-3-1 に示す. また、リラクセーション試験中は室内に安置し、その状況の一例を図 1-3-2 に示す.

図 1-3-1 ひずみゲージの取り付け

表 1-3-1 キャリブレーション試験結果

試験ケース	等級	ボルト径	首下長さ (mm)	荷重/ひずみ (kN/ɛ)
P,Bシリーズ	F10T	M22	90	0.07727

図 1-3-2 計測状況の一例(写真は3章シリーズI)

(2) リラクセーション試験結果

リラクセーション試験結果を表 1-3-2 に示す. 締付け直後(約30秒後)と28日後におけるボルト軸 カの計測結果を,それぞれ導入軸力と残存軸力として示し,導入軸力の設計ボルト軸力に対する比率(設 計軸力比率),軸力残存率についても示している.なお,計測不具合等により計測不能となったボルト については,表中で「×」で示している.すべり耐力試験を数日に亘って実施したため,軸力計測は28 日経過後も継続し,すべり耐力試験直前まで行った.ただし,計測期間の統一を図るため,ここでは28 日までの計測結果を示している.

導入軸力は, P4-20, B3-10 を除けば, 目標値より 1~3%高い軸力が導入されており, 概ね目標軸力で あった.

試験体の種類ごとの軸力残存率の経時変化を図1-3-3, 1-3-4 に示す. 図中には,計測結果に関する回帰直線と決定係数も示している.

以降の節では、これら試験結果に基づいて軸力低下に及ぼす接触面数と導入軸力の影響について考察 する.

試験体			ボルト軸力													
			締付け直後(導入軸力)			: N _a [kN]		672時間後の軸力(残存す				軸力) : N _b		軸力 建 友 索		
			ボル	ŀNo.	平均		設計軸力比 率(%)		ボル	ボルトNo.		ち	設計軸力		/太中平 [%]	
			No.1	No.2					No.1	No.2	十均		比率(%)			
無機 ジンク 75µm	P1-15	-1	243	242	242.5	5 0 240.8 0	118.3	117.5	228	227	227.5	225.8	111.0	110.2	93.8	93.8
		-2	239	235	237.0		115.6		225	220	222.5		108.5		93.9	
		-3	237	249	243.0		118.5		221	234	227.5		111.0		93.6	
	P2-15	-1	242	235	238.5	239.0	116.3	116.6	219	214	216.5	217.0	105.6	105.9	90.8	91.0
		-2	235	×	235.0		114.6		213	210	211.5		103.2		90.6	
		-3	241	246	243.5		118.8		221	225	223.0		108.8		91.6	
	P3-15	-1	250	237	243.5	242.3	118.8	118.2	226	214	220.0	220.0	107.3		90.3	91.0
		-2	243	247	245.0		119.5		221	×	221.0		107.8	107.3	90.9	
		-3	244	233	238.5		116.3		226	212	219.0		106.8		91.8	
	P3-20	-1	246	258	252.0	247.2	122.9	120.6	221	233	227.0	222.5	110.7	108.5	90.1	90.0
		-2	248	242	245.0		119.5		223	219	221.0		107.8		90.2	
		-3	244	245	244.5		119.3		220	219	219.5		107.1		89.8	
	P4-15	-1	×	×	×	239.3	×	116.7	×	×	×	211.8	×	103.3	×	88.9
		-2	238	249	243.5		118.8		211	220	215.5		105.1		88.5	
		-3	235	×	235.0		114.6		210	206	208.0		101.5		89.4	
	P4-20	-1	262	259	260.5	256.5	127.1	125.1	229	228	228.5	226.7	111.5	110.6	87.7	88.4
		-2	254	256	255.0		124.4		225	226	225.5		110.0		88.4	
		-3	252	256	254.0		123.9		225	227	226.0		110.2		89.0	
ブラスト	B1-10	-1	229	229	229.0	230.8	111.7	112.6	224	224	224.0	226.2	109.3	110.3	97.8	98.0
		-2	236	228	232.0		113.2		233	223	228.0		111.2		98.3	
		-3	233	230	231.5		112.9		228	225	226.5		110.5		97.8	
	B2-10	-1	237	226	231.5	231.2	112.9	112.8	229	220	224.5	224.8	109.5	109.7	97.0	97.3
		-2	230	226	228.0		111.2		226	220	223.0		108.8		97.8	
		-3	240	228	234.0		114.1		233	221	227.0		110.7		97.0	
	B3-10	-1	231	206	218.5	221.5	106.6	108.0	220	203	211.5	217.3	103.2	106.0	96.8	97.1
		-2	×	×	×		×		×	222	222.0		108.3		×	
		-3	224	225	224.5		109.5		217	220	218.5		106.6		97.3	
	B3-15	-1	247	240	243.5	240.7	118.8	117.4	241	229	235.0	231.2	114.6	112.8	96.5	97.0
		-2	236	245	240.5		117.3		228	238	233.0		113.7		96.9	
		-3	×	238	238.0		116.1		219	232	225.5		110.0		97.5	
	B4-10	-1	240	225	232.5	237.2	113.4	115.7	231	218	224.5	228.2	109.5	111.3	96.6	96.2
		-2	239	234	236.5		115.4		230	223	226.5		110.5		95.8	
		-3	245	240	242.5		118.3		235	232	233.5		113.9		96.3	
	B4-15	-1	257	257	257.0	251.8	125.4	122.8	248	248	248.0	243.2	121.0	118.6	96.5	96.6
		-2	248	240	244.0		119.0		240	231	235.5		114.9		96.5	
		-3	251	258	254.5		124.1		241	251	246.0		120.0		96.7	

表 1-3-2 導入軸力およびリラクセーション集計結果

注) 設計軸力比率:計測ボルト軸力/設計ボルト軸力, ×:測定不能箇所

図 1-3-3 リラクセーション試験における軸力残存率の推移1(摩擦面処理:無機ジンク)

図 1-3-4 リラクセーション試験における軸力残存率の推移 II (摩擦面処理: ブラスト)

(3) 接触面数および膜厚の影響

無機ジンクの結果(図1-3-3)においては、接触面数の影響は明瞭であり、回帰直線においても接触面数が多いほど軸力の低下が著しいことが示されている.これは、ボルトが締付ける合計塗膜厚(以下、 締付け膜厚)の違いによって生じたものと考えられる.

締付け膜厚の影響を評価するため、ボルト孔周辺における無機ジンクの推定合計膜厚と軸力残存率の 関係を図 1-3-5 に示す.ここで示す推定合計膜厚とは、試験体ごとの平均値として、膜厚計測で得られ た各試験体のすべり側ボルト孔周辺の平均膜厚(図1-2-5(b))に、塗膜面数(継手形式1:4面,継手形 式2:6面,継手形式3:8面,継手形式4:10面)を乗じて求めた.軸力残存率についても試験体平均 値を示している.図 1-3-5 には、推定合計膜厚が大きいほど軸力の低下が大きくなる関係が示されてい る.この関係に基づくと、試験体 P1-15、P2-15 において、平均膜厚が他の試験体と同程度であった場合 には、実測値よりも若干と思われるが高い軸力残存率を保持していたものと推察される.

一方,ブラストの結果(図 1-3-4)においては、計測結果のばらつきが大きいが、28 日後の軸力残存 率等において、接触面数が多いほど軸力低下傾向がわずかに認められる.ブラスト処理された表面にお いても極わずかにクリープが発生し、その影響が接触面数に応じて顕在化した可能性がある.だだし、 最も影響がある継手形式4においても、残存軸力率は96%と軸力残存率は無機ジンクと比べ高かった.

以上のように,無機ジンクにおいては締付け膜厚に起因した接触面数の影響が顕著であることが示さ れた.

(4) 導入軸力の影響

導入軸力の影響に関して,表 1-3-2 に示すように無機ジンクの同じ継手形状においては,増し締め率 が高い試験体の軸力低下がわずかに大きくなる傾向が示されている.そこで,個々のボルトの導入軸力 と28 日後の軸力残存率の関係を図1-3-6に,表1-3-3には図1-3-6に示した回帰直線について回帰係数, 切片,決定係数を示している.図1-3-6(a)の横軸目盛において,括弧内の数値は設計軸力205kNに対す る比率を示す.既往の研究⁸⁾では,無機ジンクにおいて,導入軸力が高いほど残存軸力の低下が大きくな る傾向が示されたが,その傾向が認められたのは締付け膜厚が大きい P4-15,20 でのみであった.これは, 導入軸力が高いと締付けによる無機ジンクのクリープが大きくなるためと考えられる.ただし,それ以 外の試験体では明確な傾向は確認できなかった.同様に,ブラストにおいても,導入軸力の影響は確認 できなかった.

図 1-3-6 28 日経過後の軸力残存率の比較(括弧書きの数値は設計軸力 205kN に対する比率)

摩擦面 処理	試験体名	回帰係数 (/kN)	切片	決定係数
	P1-15	1.74×10 ⁻²	89.6	1.52×10 ⁻¹
無機ジンク	P2-15	4.01×10 ⁻²	81.4	9.82×10 ⁻²
75µm	P3-15,P3-20	-3.75×10 ⁻²	99.6	9.66×10 ⁻²
	P4-15,P4-20	-4.58×10 ⁻²	99.9	5.54×10 ⁻¹
	B1-10	1.55×10 ⁻²	62.3	8.27×10 ⁻¹
ブニット	B2-10	-2.46×10 ⁻²	103	7.74×10 ⁻²
フラスト	B3-10,B3-15	-2.89×10 ⁻²	104	1.16×10 ⁻¹
	B4-10,B4-15	1.41×10 ⁻²	93	6.73×10 ⁻²

表 1-3-3 回帰係数, 切片, 決定係数のまとめ

1-3-2 接触面数とボルト軸力がすべり係数に及ぼす影響

本項では、はじめにすべり耐力試験方法を説明し、試験結果に基づいて、接触面数とボルト軸力がす べり係数に及ぼす影響について考察する.

(1) すべり耐力試験の方法

すべり耐力試験は、リラクセーション試験後に実施した. 試験には載荷能力 1,000kN の万能試験機を

用いた.本試験では,試験体両端部それぞれ約 120mm の範囲をチャックで固定し,引張荷重を 2kN/s 程度の速度で主すべりが生じるまで与えた.試験の状況を図 1-3-7 に示す.

試験時には、荷重および試験体に発生するひずみを 10Hz で計測した. その際、図 1-3-8 に示すすべり 側の内側のボルト軸位置(No.1 ボルト)における母板と連結板間の相対変位を測定するため、クリップ ゲージを設置してすべり時の変位を計測した. また、母板の曲げひずみ計測については、ひずみゲージ (ゲージ長 5mm)によって行った. すべり耐力(荷重)は、主すべりの発生によって大きな音を伴って 荷重が下がったとき(荷重と変位の関係に大きな変化が見られたとき)の荷重とした.

図 1-3-7 載荷状況

(2) すべり耐力試験の結果

載荷試験結果を表 1-3-4 に示す.いずれの試験体でも,主すべり発生時には明瞭な荷重低下と大きな すべり音が発生したため,すべり耐力は明確であった.表中には,すべり時の変位量も示している.建 築分野では開口変位 0.2mm をすべりとしているが¹⁴⁾,建築鉄骨は摩擦面を赤さびとすることが基本であ り,無機ジンクの場合については開口変位が 0.1mm を下回っていることから,すべりを評価する場合の 変位量として 0.2mm は過大であることがわかる.ブラストについては 0.2mm の変位量を準用できると考 えられ,本試験では B3-15-2, B4-10-1, B4-10-3, B4-15-2 の 4 試験体で,すべり時の変位量が 0.2mm を超え ていた.しかし,これらの試験体における 0.2mm 時点の荷重は,それぞれ 458.7kN, 540.0kN, 591.4kN, 589.3kN であり,表 1-3-4 に示したすべり耐力と最大でも 5kN 程度の違いであったので,統一性を図る ため,ここでは変位量ではすべりの判定を行わなかった.図 1-3-9 には試験で得られた無機ジンク,ブ ラスト双方のすべり荷重と変位の関係の一例を示すが,両者で荷重と変位の関係が若干異なっているこ とが判る.

すべり係数μ_bは、すべり耐力試験直前の軸力に基づくもので次式により求められる.

$$\mu_{\rm b} = \frac{P}{mnN_{\rm b}} \tag{1-3-1}$$

ここに、P はすべり耐力、m は摩擦面数(本論文で独自に定義した接触面数とは異なり、継手形式 1 では 1、それ以外の継手形式では 2)、n はボルト本数(すべての試験体で 2)、N_bはすべり耐力試験直前

の軸力である.一方, μsは(1)式において Nbの代わりに設計ボルト軸力(Ns: 205kN)で算出したすべり係 数であり,設計の便宜のために参考として示している.そこで,以下のすべり耐力の評価はすべり係数 μ_bで行うこととする.

表 1-3-4 に示したように、全体的に無機ジンクよりブラスの方がすべり係数が高くなっていた. 無機 ジンクにおいて、すべり係数μbは 0.50 を下回る場合も見られたが、設計すべり係数 0.45 を上回ってお り, その他は 0.50 を超える耐力を有していた. また, ブラストの中では, B3-15-2 と B3-15-3 ですべり係 数μ_bが若干低い値となったが、これらの試験体では軸力比(内側ボルト/外側ボルト)が低くその影響も 考えられた. 図1-3-10に軸力比とすべり係数μの関係を示す. ブラストでは、軸力比が低いとμは小 さくなる傾向となったが、無機ジンクではその逆の傾向が示され、軸力比の影響とは考え難く、B3-15-2 および B3-15-3 において、すべり係数 μ_bが低くなった原因の詳細は不明である.

以降では、これらの試験結果に基づいて、すべり係数μ,に及ぼす偏心(曲げ)、接触面数およびボル ト軸力の影響について考察する.

				試験自	し即の軸	刀	すべり	べり すべり係数						サマリ
⇒+ m 4+				NŁ	6 [kN]		耐力) .	/ // 34		曲げひずみ [µɛ]		市の
	試験体			ボルトト	Jo.	軸力比	P							爱恒
		No.1	No.2	平均	(注1)	[kN]	μ_s		μ_b				里 [mmm]	
-		1	223	222	228.0	0.96	256	0.624		0.561		1072		0.100
	P1-15	-1	225	235	226.0	1 10	236	0.024	0 596	0.501	0 534	030	1014	0.100
	1 1-15	-2	233	213	233.0	0.04	230	0.570	0.570	0.502	0.554	1030	1014	0.057
		-1	217	213	216.0	1.03	460	0.561		0.530		99		0.035
	P2-15	-1	212	213	210.0	1.03	430	0.501	0 545	0.552	0 516	-84		0.047
	12 10	-3	2212	200	223.5	0.98	450	0.549	0.010	0.503	0.510	46		0.045
hurt		-1	225	214	219.5	1.05	429	0.523		0.489		613		0.024
無	P3-15	-2	218	×	218.0	×	441	0.538	0.525	0.506	0.496	974	711	×
磯		-3	215	211	213.0	1.02	421	0.513		0.494		547		0.035
\sim		-1	220	232	226.0	0.95	440	0.537		0.487		609		0.027
\sim	P3-20	-2	223	219	221.0	1.02	430	0.524	0.520	0.486	0.480	620	673	0.014
ク		-3	219	218	218.5	1.00	408	0.498		0.467	1	791		0.022
		-1	X	X	X	×	×	X		X		×		X
	P4-15	-2	205	214	209.5	0.96	432	0.527	0.520	0.516	0.511	-42		0.067
		-3	209	205	207.0	1.02	420	0.512		0.507		-8		0.023
		-1	228	227	227.5	1.00	463	0.565		0.509		0		0.051
	P4-20	-2	224	226	225.0	0.99	439	0.535	0.556	0.488	0.505	-23	—	0.068
		-3	224	226	225.0	0.99	466	0.568		0.518		23		0.016
		-1	221	220	220.5	1.00	314	0.766		0.712		1201		0.136
	B1-10	-2	230	223	226.5	1.03	271	0.661	0.721	0.598	0.658	1101	1164	×
		-3	229	225	227.0	1.02	302	0.737		0.665		1190		0.152
		-1	229	220	224.5	1.04	574	0.700		0.639		-20		0.183
	B2-10	-2	226	220	223.0	1.03	521	0.635	0.655	0.584	0.602	473	—	×
		-3	227	215	221.0	1.06	516	0.629		0.584		144		0.165
		-1	220	203	211.5	1.08	513	0.626		0.606		931		×
ブ	B3-10	-2	224	221	222.5	1.01	528	0.644	0.627	0.593	0.591	953	874	0.149
ラ		-3	217	220	218.5	0.99	501	0.611		0.573		738		×
ス		-1	241	228	234.5	1.06	545	0.665		0.581		849		0.192
F	B3-15	-2	229	238	233.5	0.96	459	0.560	0.603	0.491	0.535	433	573	0.204
		-3	218	232	225.0	0.94	479	0.584		0.532		437		0.156
	.	-1	225	214	219.5	1.05	545	0.665		0.621		17		0.234
	B4-10	-2	230	224	227.0	1.03	526	0.641	0.677	0.579	0.612	-14	—	0.093
		-3	236	232	234.0	1.02	595	0.726		0.636		-41		0.237
	D4 1-	-1	248	249	248.5	1.00	623	0.760	0 505	0.627	0.010	51		0.193
	B4-15	-2	240	232	236.0	1.03	592	0.722	0.737	0.627	0.616	63	—	0.227
		-3	247	256	251.5	0.96	599	0.730		0.595		-17		0.184

表 1-3-4 すべり耐力試験集計結果

(注) 軸力比=内側軸力/外側軸力, µ:設計ボルト軸力で算出, µ:試験直前のボルト軸力で算出, ×:測定不能箇所

(3) 偏心の影響

表 1-3-4 には、すべり側母板表裏面のひずみゲージの計測結果から算出した曲げひずみ(以下、曲げ ひずみ)も示している.継手形状 1,3 では、母板中心軸のずれによる偏心曲げモーメントによって曲げ ひずみが発生していることが判る. 図 1-3-11 は、各試験体における曲げひずみとすべり係数の関係を示 したものである.継手形式 2 と比較し、フィラーを用いた継手形式 3 では、すべり係数 μbは若干小さ かったが大きな違いではなく、これについては比較的近い形状の試験体を対象とした宮地ら⁹⁰の試験結果 とも一致する. 逆に、曲げの影響が最も大きい継手形式 1 では、むしろ継手形式 2 よりすべり係数 μb は大きく、曲げひずみとすべり係数の間に明瞭な関係は見られなかった.

(4) 接触面数およびボルト軸力の影響

図1-3-12は縦軸にすべり係数μ_b,横軸には試験直前のボルト軸力を示している.ここでは,全試験体 を示しており接触面数の影響も比較できる.図1-3-12において,無機ジンクの場合,すべり係数μ_bは 接触面数や軸力の影響をほとんど受けないことを示している.一方,ブラストの場合においては,継手 形式3の試験体のすべり係数が他よりやや低い値を示すとともに軸力との間に負の相関が示されている. しかしながら,接触面数がさらに多い継手形式4では,継手形式3よりもやや高いすべり係数が示され ており,また,軸力とはほとんど相関が見られないことから,接触面数や軸力の影響は明確でないと判 断できる.

以上のように、本検討で対象とした条件において、偏心による曲げ、接触面数、ボルト軸力の影響は 認められなかった.

1-4 接触面数と無機ジンクの膜厚に関する検討(シリーズⅡ)

シリーズIIでは、図1-1-1(b)~(d)に示す継手形式2~4の3種類について摩擦面に塗布する無機ジン ク厚に着目し、塗布する膜厚の目標を道示¹⁾の条件の下限(50µm)と上限(100µm)とした試験体を製 作した.そして、リラクセーション試験およびすべり耐力試験を実施し、シリーズIの検討結果も踏まえ て摩擦面数に応じた導入軸力を提案した.

1-4-1 接触面数と無機ジンクの膜厚が軸力低下に及ぼす影響

本項では、シリーズIIにおけるリラクセーション試験結果に基づいて、接触面数と無機ジンクの膜厚 がその後の軸力低下に及ぼす影響について考察する.

(1) リラクセーション試験方法

リラクセーション試験は、ボルト締付け時点から 28 日間(672 時間)行った. 試験対象は、すべり側 の合計 36 本のボルトとし、ボルト軸力をひずみゲージ(ゲージ長 1mm)により計測するため、ボルト頭 にリード線を通すための孔を明け、ボルト軸部(母材板厚の中央位置)にひずみゲージ 2 枚を取付けた (図 1-4-1). このゲージ 2 枚の出力の平均値を軸ひずみとし、これに換算率を乗じることで軸力を取得 した. 換算率は、事前に各ロット 3 本のボルトについてキャリブレーション試験を行い決定した. キャ リブレーション試験結果を表 1-4-1 に示す. また、リラクセーション試験中は室内に安置し、その状況 を図 1-4-2 に示す.

図 1-4-1 ひずみゲージの取り付け

表 1-4-1 キャリブレーション試験結果

試験ケース	等級	ボルト径	首下長さ (mm)	荷重/ひずみ (kN/ɛ)	
PA,PBシリーズ	F10T	M22	90	0.07447	

図 1-4-2 計測状況

(2) リラクセーション試験結果

リラクセーション試験結果を表 1-4-2 に示す. 締付け直後(約 30 秒後)と 28 日後におけるボルト軸 力の計測結果を,それぞれ導入軸力と残存軸力として示し,導入軸力の設計ボルト軸力に対する比率(設 計軸力比率),軸力残存率についても示している.なお,計測不具合等により計測不能となったボルト については,表中で「×」で示している.すべり耐力試験を数日に亘って実施したため,軸力計測は 28 日経過後も継続し,すべり耐力試験直前まで行った.ただし,計測期間の統一を図るため,ここでは 28 日までの計測結果を示している.

導入軸力は、すべての試験体で目標値より低い軸力が導入されているが、概ね目標軸力であった. 試験体の種類ごとの軸力残存率の経時変化を図 1-4-3 に示す. 図中には、計測結果に関する回帰直線と決定係数も示している. シリーズ I の結果も参考として載せている. シリーズ I の試験のボルトの増し締め率は継手形式 2 が 15%、継手形式 3 が 15%、継手形式 4 が 20%である.

以降では、これら試験結果に基づいて軸力低下に及ぼす接触面数と無機ジンクの膜厚の影響について 考察する.

			ボルト軸力														
긝	睑体		締め付け直後(導入軸力)[kN]							672時間後の軸力(残存軸力)[kN]						軸力	
产心 吸火 1/4		ボルトNo.		जर			設計軸力		ボルトNo.		+/=	設計軸力		残存率[%]			
			No.1	No.2	半均		比率(%)		No.1	No.2	- 1 -	12)	比率(%)				
		-1	×	223	223		108.8		×	194	194		94.6		87.0		
	PA2-15	-2	222	216	219	221	106.8	107.6	200	199	200	197	97.3	96.2	91.1	89.4	
		-3	218	221	220		107.1		196	200	198		96.6	1	90.2		
無機		-1	225	233	229		111.7	111.9	203	211	207		101.0	100.2	90.4		
ジンク	PA3-15	-2	224	226	225	229	109.8		198	201	200	205	97.3		88.7	89.5	
50µm		-3	232	236	234		114.1		209	210	210		102.2		89.5		
	PA4-20	-1	236	×	236	236	115.1	115.3	207	×	207	208	101.0	101.4	87.7	87.9	
		-2	240	231	236		114.9		209	×	209		102.0		88.7		
		-3	239	236	238		115.9		209	206	208		101.2		87.4		
		-1	236	235	236	230	114.9	112.2	211	212	212		103.2	98.5	89.8	87.7	
	PB2-15	-2	229	228	229		111.5		198	×	198	202	96.6		86.7		
		-3	228	224	226		110.2		199	193	196		95.6		86.7		
無機		-1	232	225	229		111.5		201	188	195		94.9		85.1		
ジンク	PB3-15	-2	221	223	222	227	108.3	110.6	189	193	191	190	93.2	92.6	86.0	83.8	
100µm		-3	231	228	230		112.0		184	×	184]	89.8		80.2		
		-1	233	236	235		114.4		188	196	192		93.7	96.3	81.9		
	PB4-20	-2	240	243	242	238	117.8	115.9	201	201	201	197	98.0		83.2	83.0	
		-3	240	234	237		115.6		202	196	199		97.1		84.0		

表 1-4-2 導入軸力およびリラクセーション集計結果

注) 設計軸力比率:計測ボルト軸力/設計ボルト軸力,×:測定不能箇所

図 1-4-3 リラクセーション試験における軸力残存率の推移

(c) 継手形式 4

図 1-4-3 リラクセーション試験における軸力残存率の推移(続き)

(3) 接触面数および膜厚の影響

締付け膜厚の影響を評価するため、ボルト孔周辺における無機ジンクの推定合計膜厚と軸力残存率の 関係を図 1-4-4 に示す.ここで示す推定合計膜厚とは、試験体ごとの平均値として、膜厚計測で得られ た各試験体のすべり側ボルト孔周辺の平均膜厚(図1-2-5(e))に、塗膜面数(継手形式1:4面,継手形 式2:6面,継手形式3:8面,継手形式4:10面)を乗じて求めた.軸力残存率についても試験体平均 値を示している.また、参考にシリーズIの回帰式を合わせて示す.図1-4-4 には、シリーズⅡにおい てもシリーズIと同様に推定合計膜厚が大きいほど軸力の低下が大きくなる関係が示されている.

以上のように、無機ジンクにおいては締付け膜厚に起因した接触面数および膜厚の影響が顕著である ことが示された.

図 1-4-4 推定合計膜厚と軸力残存率の関係

1-4-2 接触面数と無機ジンクの膜厚がすべり係数に及ぼす影響

本項では、はじめにすべり耐力試験方法を説明し、試験結果に基づいて、接触面数と無機ジンクの膜 厚の違いがすべり係数に及ぼす影響について考察する.

(1) すべり耐力試験の方法

すべり耐力試験は、リラクセーション試験後に実施した. 試験には載荷能力 2,000kN の万能試験機を 用いた.本試験では、試験体両端部それぞれ約 120mm の範囲をチャックで固定し、引張荷重を 2kN/s 程 度の速度で主すべりが生じるまで与えた. 試験の状況を図 1-4-3 に示す.

試験時には、荷重および試験体に発生するひずみを 100Hz で計測した.その際、図 1-4-4 に示す位置 にクリップゲージとひずみゲージを設置した.クリップゲージはすべり側の内側のボルト軸位置(No.1 ボルト)における母板と連結板間の相対変位と母板間の相対変位を計測した.ひずみゲージ(ゲージ長 5mm)では母板の曲げを計測した.主すべりの発生は、大きな音を伴って荷重が下がったとき、あるい は荷重と変位の関係に大きな変化が見られたときと判断し、すべり耐力(荷重)荷重とした.

図 1-4-3 載荷状況

(2) すべり耐力試験の結果

載荷試験結果を表 1-4-2 に示す.主すべり発生時には明瞭な荷重低下と大きなすべり音が発生したものと荷重が低下し始めるものの 2 種類があったが,これらと無機ジンクの膜厚や継手形式による傾向は確認できなかった.図1-4-5 に No.1 ボルト位置の相対変位の一例を示す.薄膜の PA 試験体では大半の試験体で図1-4-5 (a) に示すように,主すべり後はなだらかに荷重が低下しながら変位が増加したが,厚膜の PB 試験体の 9 体中 4 体で図1-4-5 (b) に示すように,荷重が急激に低下した後になだらかな低下に移行するものがあった.なお,表 1-4-2 にはすべり荷重時の相対変位の値も示しているが,前項に示した標準膜厚における無機ジンクの試験体と同様に,No.1 ボルト位置の相対変位は 0.1mm を下回るものが大半であるが,薄膜の PA 試験体では,0.2mm に近いものもあった.なお,母板間の相対変位についても概ね 0.2mm を上回っていた.

表 1-4-2 のすべり係数 μb は式(1-3-1)を用いて m=2 と n=2 を代入して求めている. μs は式(1-3-1) において N_bの代わりに設計ボルト軸力(Ns: 205kN)で算出したすべり係数である. すべり係数μbは全て の試験体で設計すべり係数 0.45 を上回っていることが確認できる.また、すべり係数 μhは3 種類の継手 形式の全てで厚膜の PB 試験体のほうが薄膜の PA 試験体よりも大きくなる傾向が確認できる.図1-4-6 にすべり係数µ_bと試験直前の軸力の関係を示している. すべり係数µ_bと試験直前の軸力には明確な相 関性が確認できない.

図 1-4-7 は荷重とひずみの関係の一例である. 図中には表裏面のひずみ値から算出した曲げひずみも 示しているが,前項の結果と同様,フィラーを用いた継手形式3で曲げひずみが確認できる.

	試驗休			試験直前の軸力 N _b [kN]			すべり係数				相対変位(mm)		
	10 VOX PT*		ボル No.1	ŀNo. No.2	平均	[kN]	μ	s	μ	b	母板 -連結板間	母板間	
		-1	×	193	193.0	478	0.619		0.583		0.075	0.248	
	PA2-15	-2	199	198	198.5	457	0.576	0.579	0.557	0.553	0.091	0.218	
		-3	195	198	196.5	426	0.542		0.520		0.128	0.192	
		-1	202	210	206.0	459	0.557		0.560		0.199	0.281	
薄膜	PA3-15	-2	198	201	199.5	434	0.544	0.555	0.529	0.556	0.057	0.229	
		-3	208	213	210.5	474	0.563		0.578		0.155	0.262	
		-1	207	×	207.0	522	0.630		0.637		0.064	0.388	
	PA4-20	-2	208	×	208.0	536	0.644	0.620	0.654	0.627	0.208	0.566	
		-3	208	205	206.5	484	0.586		0.590	0.185	0.304		
		-1	210	211	210.5	523	0.621		0.638		0.079	0.280	
	PB2-15	-2	196	×	196.0	526	0.671	0.655	0.641	0.641	×	0.296	
		-3	198	193	195.5	527	0.674		0.643		0.098	0.292	
	PB3-15	-1	201	198	199.5	492	0.617		0.600	0.585	0.063	0.270	
厚膜		-2	188	192	190.0	477	0.628	0.627	0.582		0.065	0.279	
		-3	185	×	185.0	471	0.636		0.574		0.062	0.229	
		-1	188	194	191.0	507	0.664		0.618	0.627	0.147	0.281	
	PB4-20	-2	200	202	201.0	519	0.646	0.655 0.	0.633		0.091	0.302	
		-3	201	194	197.5	517	0.654		0.630	0.137	0.349		
	(注)μ	<u>s</u> :設計ボ	ジルト軸ス	りで算出 ,	μ _b :	試験直前	のボルト	・軸力で領	算出,×	: 測定不能簡	節所	
			1	Į	T		600 523	すべり	耐力 ●	'			
00-すべり耐力 - 500- 78										-			
0- 0-							NY 400 斯 400					-	
0-						_	新 1000 100 100						

表 1-4-2 すべり耐力試験集計結果

6 5 4 載荷荷重(kN) 4 3 2 100 100 0 0 0L 0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 相対変位(mm) 相対変位(mm) PB2-15-1 (a) PA2-15-1 (b)

図 1-4-6 ボルト軸力とすべり係数の関係

図 1-4-7 荷重とひずみの関係の一例

1-5 接触面数に応じた導入ボルト軸力の考察

本項では、シリーズIとシリーズIIの試験結果と既報の試験結果との比較を行うとともに、締付けから1万時間経過後の軸力残存率を推定し、これらの結果より接触面数を考慮した導入ボルト軸力を提案する.

1-5-1 既報の試験結果との比較

図1-5-1に、文献 6)で調査された既往の研究の締付け後のボルト軸力の経時変化と、文献 6,8)の試験 結果の回帰直線(両試験結果を合わせてた直線)および、シリーズ I とシリーズ II の継手形式 2(2 面摩 擦)における回帰直線を示す.文献 6),8)の無機ジンクの結果は標準膜厚に近い塗布量での試験体の結果 である.

図 1-5-1 に示すように、無機ジンクの回帰直線の傾きはブラストの場合と比較して大きい. 無機ジン クおよびブラストの双方ともに、シリーズ I の各回帰直線は既往の研究結果から得られる回帰直線と比 較的良く一致しており、先行研究との整合性を確認することができる. 特に、ブラストにおける文献 6) の試験結果と本試験結果の回帰直線はほぼ一致していた. また、文献 6) で調査した1年間(8760 時間) のデータとシリーズ I の試験結果の回帰直線は、ほぼ同等の傾きであることから、シリーズ I の試験体 の軸力残存率を推定するにあたり、ボルト締付けから 28 日間(672 時間)の試験で得られた回帰直線を 約 1 年後まで外挿し得ることを示す結果と考えられる. 無機ジンクの結果についてはシリーズ II の回帰 直線も示しているが、薄膜の PA2 試験体、厚膜の PB2 試験体とも、標準膜厚の試験結果とは異なってお り、これらの傾きの違いは、無機ジンクの膜厚の違いを表していると考えられる. 無機ジンクの膜厚に 着目した場合の長期リラクセーションの結果は当部会で調査した限りはないが、ここでは便宜上、回帰 直線を外挿することにより約1年後の軸力残存率を推定する.

図 1-5-1 先行研究 6), 8) との軸力低下の比較

1-5-2 1万時間後の軸力残存率の推定

前項における考察を踏まえて、図1-3-3、図1-3-4、図1-4-3に示した軸力残存率に関する回帰直線を、 ボルト締付けから1万時間まで外挿し、1万時間後の軸力残存率ならびに設計軸力比率を推定した.

図 1-5-2 に摩擦面を無機ジンクとした場合,図 1-5-3 に摩擦面をブラストとした場合の軸力残存率と 残存軸力の設計軸力(206kN)に対する比率を示す.これらの図では,実際の増し締め率の同種試験体平 均値と対比して各推定結果を示している.

図1-5-2の無機ジンク試験体の結果をみると、継手形式1の倍場合には、1万時間後であっても軸力残 存率が85%を超えており.設計軸力を満足していることが確認できる.無機ジンクの膜厚もパラメータ とした継手形式2~4について、フィラーのない継手形式2では、標準膜厚のP2試験体の結果をみると、 軸力残存率が85%を超えて設計軸力も満足しており、文献6)、8)で提案されている15%増し締めが妥当で あることがわかる.薄膜のPA2試験体と厚膜のPB2試験体は軸力残存率が86.9%、84.7%であった.設計 軸力比率は93.5%、95.1%と100%を下回ったが、導入軸力の増し締め率が目標値の15%であれば、101.0%、 97.9%となり、設計軸力をほぼ満足する結果となった.

フィラーを1枚有する継手形式3について,標準膜厚のP3試験体の結果をみると,増し締め率が15%, 20%の双方の試験体とも軸力残存率が85%を超えて設計軸力も満足している.薄膜のPA3試験体と厚膜のPB3試験体は軸力残存率が87.0%,82.4%であった.設計軸力比率は97.3%,91.1%と100%を下回った. なお,導入軸力の増し締め率が目標値の15%であったと仮定すると,それぞれの設計軸力比率は100.4%, 95.5%となる.

フィラーを2枚有する継手形式4について,標準膜厚のP4試験体の結果をみると,増し締め率が15%, 20%の双方の試験体とも軸力残存率が85%を超えて設計軸力も満足している.しかし,P4-15 試験体では 増し締め率が目標値を2%上回っており,目標値で締め付けた場合には,設計軸力を下回る結果となる. 薄膜のPA4 試験体と厚膜のPB4 試験体は軸力残存率が84.4%,78.3%であった.設計軸力比率は99.0%, 90.9%と100%を下回った.なお,導入軸力の増し締め率が目標値の20%であったと仮定すると,それぞ れの設計軸力比率は101.9%,94.9%となる.

図1-5-3のブラスト試験体の結果をみると、1万時間後の軸力残存率が無機ジンクの場合より高いこと が確認できる.そして、フィラーを有する場合には、増し締め率が10%であっても、1万時間後の設計軸 力比率は100%を超えてることが確認できる.

(a) 導入軸力の増し締め率と軸力残存率

III-1-30

1-5-3 接触面数を考慮した導入ボルト軸力の提案

前項に示した結果より接触面を無機ジンクとした場合,継手形式1については導入軸力の増し締め率 が15%で1年後にも設計軸力を満足すると考えられる.継手形式2については,厚膜としたPB2試験体 で1年後の軸力が設計軸力を若干下回る結果となった.この要因の一つとしてPB2試験体については目 標膜厚100µmに対し,実際の膜厚が平均で126µmと厚かったことも考えられる.継手形式3についても, 厚膜としたPB3試験体で1年後の軸力が設計軸力を下回る結果となった.この要因としては実際の膜厚 が平均で111µmと厚かったこと,3体の試験体のうち,1体の軸力残存率が80.2%と極端に低かったこと が挙げられる.継手形式4については,標準膜厚の結果からは増し締め率15%では設計軸力を満足しな い可能性があることがわかる.増し締め率を20%とした場合は,厚膜としたPB4試験体が実際の膜厚が 平均で95µm目標値よりもやや低いものの,1年後の軸力が設計軸力を下回る結果となった.

接触面をブラストとした場合には,接触面数によらず,道示¹⁾の規定である設計ボルト軸力に対する

10%増しの締付けが妥当であると考えられる.

以上のように、接触面を無機ジンクとした場合、厚膜の場合には、継手形式2、3、4 に対して 増し締め率 15%、15%、20%では不足し、さらなる増し締めも考えられる.しかし、実際の高力ボルト継手部における無機ジンク塗布の施工を考えると、通常の管理が行われていれば、これらの4、6、8 面ある塗装面の全てが厚膜となる可能性は低いと想定され、フィラーなし、とフィラー1 枚、2 枚の場合の増し締め率はそれぞれ 15%、15%、20%で良いと考えられる.表 1-5-1 に本部会で推奨する、接触面数に応じた導入軸力の増し締め率を示す.

	増し締め率					
摩擦面(数)	毎歩ジンク	ブラスト				
	無機シンク	(粗面状態)				
1面摩擦						
2面摩擦	15%	100/				
2面摩擦(フィラー1枚)		10%				
2面摩擦(フィラー2枚)	20%					

表 1-5-1 導入ボルト軸力の推奨値(増し締め率で表示)

1-6 まとめ

本章では、高力ボルト摩擦接合継手のトルク法によるボルト締付けの際の設計ボルト軸力に対する増 し締め率について、摩擦面の数がリラクセーションとすべり耐力に及ぼす影響に着目し、実験的な検討 を行った.摩擦面は、無機ジンクを塗布した場合とブラストの2種類とし、摩擦面の数は1面摩擦継手 とフィラーの枚数を0,1,2枚とした3種類の2面摩擦継手の合計4種類とした.このうち、フィラー を有する継手では増し締め率もパラメータとし、無機ジンクを塗布した2面摩擦継手については無機ジ ンクの膜厚もパラメータとした.そして、実験結果より、接触面をブラストとした場合には、接触面数 によらず、道示¹⁾の規定である設計ボルト軸力に対する10%増しの締付けが妥当であることを確認すると ともに、無機ジンクを塗布した場合の接触面数に応じた導入軸力の推奨値を示した.

参考文献

- 1) 日本道路協会:道路橋示方書·同解説-II 鋼橋·鋼部材編, 2017.
- 2) 鉄道総合技術研究所:鉄道構造物等設計標準・同解説(鋼・合成構造物), 2009.
- 3) 日本道路協会:道路橋示方書·同解説-II 鋼橋編, 1990.
- 4) 鉄道総合技術研究所:鉄道構造物等設計標準・同解説(鋼・合成構造物), 2009.
- 5) 日本道路協会:道路橋示方書·同解説-II 鋼橋編, 2012.
- 6) 南邦明:厚膜型無機ジンクリッチペイントを施した摩擦面で15%増し締めした高力ボルト試験,土 木学会論文集A1, Vol. 73, No. 1, pp. 32-39, 2017.
- 7) 日本鋼構造協会:高力ボルト接合技術の現状と課題, JSSC テクニカルレポート No.96, 2013.3.
- 8) 南 邦明:厚膜型無機ジンクリッチペイントを施した高力ボルト継手における導入軸力の影響の考察, 土木学会論文集 A1, Vol. 74, No. 1, pp. 58-63, 2018.
- 9) 宮地真一,小枝芳樹,望月秀之:フィラーを有する高力ボルト摩擦接合継手のすべり挙動について, 構造工学論文集,Vol.44A, pp55-60,1998.3.
- 10) 高橋秀幸, 宮坂淳一: フィラープレートを有する高力ボルト摩擦接合継手の耐力, 宮地技報, No. 11, pp. 147-152, 1995.

- 11) 寺尾圭史,名取暢:フィラーを用いた高力ボルト摩擦接合継手に関する検討,横河ブリッジ技報, No. 26, pp. 66-72, 1997.
- 12) 高井俊和, 彭雪, 山口隆司: フィラープレートの板厚が高力ボルト摩擦接合継手の荷重伝達に与える 影響に関する解析的研究, 土木学会論文集 A1, Vol. 71, No. 1, pp. 1-9, 2015.
- 13) 土木学会:高力ボルト摩擦接合継手の設計・施工・維持管理指針(案), 2006.
- 14) 日本建築学会:鋼構造接合部設計指針,2006.5.

第1章 付録

1-1 すべり耐力試験の条件

各試験体のすべり耐力試験の荷重-相対変位関係,荷重-ひずみ関係およびすべり耐力試験後のすべり面の状況 を以下に示すあたり,試験ケースの一覧を付表 1-1-1,測定箇所を付図 1-1-1 に示す.

試験体名	①摩擦面処理	②継手形式	すべり降伏 耐力比β	③軸力の 増し締め率
P1-15		継手形式1 (1面摩擦)	0.31	15%
P2-15		継手形式2 (2面摩擦)	0.61	15%
P3-15	無機ジンクリッチペイント	継手形式3	0.81	15%
P3-20	75µm	(2面摩擦, フィラー1枚)	0.84	20%
P4-15		継手形式4	0.81	15%
P4-20		(2面摩擦, フィラー2枚)	0.84	20%
B1-10		継手形式1 (1面摩擦)	0.24	10%
B2-10		総手形式2 (2面摩擦)	0.49	10%
B3-10		継手形式3	0.64	10%
B3-15		(2面摩擦, フィラー1枚)	0.68	15%
B4-10		継手形式4	0.64	10%
B4-15		(2面摩擦, フィラー2枚)	0.68	15%
PA2-15		継手形式2 (2面摩擦)	0.61	15%
PA3-15	無機ジンクリッチペイント 50um	継手形式3 (2面摩擦, フィラー1枚)	0.81	15%
PA4-20	John	総手形式4 (2面摩擦, フィラー2枚)	0.84	20%
PB2-15		(2面摩擦)	0.61	15%
PB3-15	無機ジンクリッチペイント 100um	(2面摩擦、フィラー1か)	0.81	15%
PB4-20		(2面摩擦, フィラー2枚) (2面摩擦, フィラー2枚)	0.84	20%

付表 1-1-1 試験体の種類とパラメータ

(a) 継手形式 1

付図 1-1-1 測定箇所

付図 1-2-6 P2-15-3

付図 1-2-9 P3-15-3

付図 1-2-12 P3-20-3

計測不能によりデータなし

付図 1-2-18 P4-20-3

付図 1-2-21 B1-10-3

付図 1-2-24 B2-10-3

付図 1-2-27 B3-10-3

付図 1-2-30 B3-15-3

付図 1-2-33 B4-10-3

付図 1-2-36 B4-15-3

III-1-53

1-3 すべり耐力試験後の接触面

各試験体のすべり耐力試験後におけるすべり面の状況を以下に示す.

付図 1-3-1 試験体 P1-15-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-2 試験体 P1-15-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-3 試験体 P1-15-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-4 試験体 P2-15-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-5 試験体 P2-15-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-6 試験体 P2-15-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-7 試験体 P3-15-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-8 試験体 P3-15-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-9 試験体 P3-15-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-10 試験体 P3-20-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-11 試験体 P3-20-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-12 試験体 P3-20-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-13 試験体 P4-15-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-14 試験体 P4-15-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-15 試験体 P4-15-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-16 試験体 P4-20-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-17 試験体 P4-20-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-18 試験体 P4-20-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-19 試験体 B1-10-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-20 試験体 B1-10-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-21 試験体 B1-10-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-22 試験体 B2-10-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-23 試験体 B2-10-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-24 試験体 B2-10-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-25 試験体 B3-10-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-26 試験体 B3-10-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-27 試験体 B3-10-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-28 試験体 B3-15-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-29 試験体 B3-15-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-30 試験体 B3-15-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-31 試験体 B4-10-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-32 試験体 B4-10-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-33 試験体 B4-10-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-34 試験体 B4-15-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-35 試験体 B4-15-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-36 試験体 B4-15-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-37 試験体 PA2-15-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-38 試験体 PA2-15-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-39 試験体 PA2-15-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-40 試験体 PA3-15-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-41 試験体 PA3-15-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-42 試験体 PA3-15-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-43 試験体 PA4-20-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-44 試験体 PA4-20-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-45 試験体 PA4-20-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-46 試験体 PB2-15-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-47 試験体 PB2-15-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-48 試験体 PB2-15-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-49 試験体 PB3-15-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-50 試験体 PB3-15-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-51 試験体 PB3-15-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-52 試験体 PB4-20-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-53 試験体 PB4-20-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 1-3-54 試験体 PB4-20-3 すべり面の状況(左:ボルト側,右:ナット側)

2. 異種接合面継手に関する先行研究と採用実績の調査

2-1 はじめに

高力ボルト摩擦接合継手においては、継手ごとに統一された接触面仕様とすることが原則となっている.しかしながら、異種接合面継手を採用することで、以下に示すように施工性の向上が期待出来る可能性がある.

- ・ 鋼箱桁では母板表面で異なる接触面仕様とすることで施工性の向上が期待できる.
- ・ 母板と連結板で接触面仕様が異なる異種接合面継手が適用できれば、橋りょうの補修工事等において連結板(工場製作)と異なる現場施工性の高い仕様を既存の母板接裏面で塗装の仕様が異なる場合があり、継手部においても表裏触面に採用することができる。

異種接合面継手に関する研究は今なお不足しているもののその適用性に関して複数の報告がなされている.また,適用が実際に検討されたり採用に至ったりした例も少なからずあるものと考えられる. そこで,その適用性に関する先行研究と採用実績の調査を行った.本章では,まず異種接合面継手の定義と分類を行ったうえで,その結果について報告する.

2-2 異種接合面継手の定義と分類

ひとつの高力ボルト継手において複数の接触面仕様を適用した継手は異種接合面継手と呼ばれている.本報告ではさらに,異種接合面継手を以下の2種類の継手に分類する.

① タイプA:母板の表面と裏面で接触面仕様が異なる異種接合面継手

図 2-2-1 タイプ A の接触面仕様

② タイプB:母板と連結板で接触面仕様が異なる異種接合面継手

図 2-2-2 タイプBの接触面仕様

2-3 異種接合面継手に関する文献調査

- 2-3-1 文献調査の方法
 - 調査対象

以下に示す土木・建築分野の構造系論文集を中心に文献収集・読み込みを行った.

- ▶ 土木学会論文集 (1944~2017)
- ▶ 同 年講 講演概要集 (1937~2017)
- ▶ 同 構造工学論文集 (2008~2017)
- ▶ 日本鋼構造協会 鋼構造論文集 (1994~2018)
- ▶ 同 鋼構造年次論文集・報告集 (1993~2017)
- 建築分野の構造系論文集

② 文献内容の取りまとめ

収集した文献の内容について、以下の内容について抜き出し表に取りまとめた.

- ▶ 試験体形状
- ▶ 試験体区分
- ▶ すべり/降伏耐力比
- ▶ 接触面処理(仕様)
- ▶ すべり係数

2-3-2 文献調査の結果

確認した 29 件の文献のうち 25 件を収集した. (一覧表を表 2-3-1 に示す.)

その内,タイプAを対象とした文献が7件,タイプBを対象とした文献が17件であり,後者の試験体による報告が多い.

また,接触面処理方法については,各文献で多種多様の仕様にて報告されている.

なお、収集した文献において報告されているすべり係数の試験値については、章末の付録1にとりま とめた.

表 2-3-1 異種接合面継手に関する先行研究の収集文献リスト

異種接合面継手に関する先行研究の文献収集リスト

	タイトル	掲載誌	試験体形状	摩擦面処理(仕様)
1	亜鉛アルミ擬合金溶射を施した高力ボルト 摩擦接合継手に関する研究	土木学会論文集A1 Vol.68, 2012 P.427-439	タイプA	表 面:無機ジンク 裏 面:亜鉛アルミ溶射
2	亜鉛アルミ擬合金溶射を施した高力ボルト 摩擦接合継手の導入軸力確認試験	土木学会論文集A1 Vol.69, 2013 P.133-138	タイプA	表 面:無機ジンク 裏 面:亜鉛アルミ溶射
3	接合面が鋼材粗面と無機ジンクリッチペイント面の高力ボルト摩擦接合継手のすべり 係数の提案	土木学会論文集A1 Vol.70, 2014 P.137-149	タイプB	母 板:ディスクサンダー, ブラスト処理 連結板:無機ジンク
4	片面に金属溶射を用いた高カボルト摩擦 接合継手のすべり係数とすべりメカニズム に関する実験的研究	構造工学論文集Vol. 61A, 2015.03 P.597-604	タイプB	母 板:無機ジンク, ブリストルブラスト 連結板:亜鉛アルミ溶射
5	無機ジンクリッチペイント面とそれと異なる 接合面処理がなされた高カボルト摩擦接 合継手のすべり耐力試験	構造工学論文集Vol.58A, 2012.03 P.803-813	タイプB	母 板:2種ケレン, グリッドブラスト 有機ジンク, ブリストルブラスト 連結板:無機ジンク
6	経年無塗装耐候性鋼材を用いた異種接合 面を有する高カボルト摩擦接合継手のす べり係数に関する実験的研究	構造工学論文集Vol.60A, 2014.03 P.632-641	タイプB	母 板:保護性さび、2種ケレン、3種ケレン、グリッドブラスト 連結板:グリッドブラスト、無機ジンク、アルミ亜鉛溶射
7	摩擦面の状態が高力ボルト継手のすべり 耐力に及ぼす影響	第59回年次学術講演会 2004.09 P.1171-1172,	タイプB	母 板:有機ジンク 連結板:無機ジンク
8	異種接合面処理を有する摩擦接合継手の すべり耐力試験	第66回年次学術講演会, 2011 P.491-492	タイプB	母 板:1種ケレン, 2種ケレン, 有機ジンク, プリストルブラスター 連結板:無機ジンク
9	仕様の異なる摩擦接合面の継手性能に関 する試験報告	第67回年次学術講演会 2012.09 P.679-680	タイプA	表 面:無機ジンク 裏 面:無塗装
10	高すべり係数接合部に関する実験的研 究(母材の表面処理がすべり特性に与える 影響)	鋼構造論文集 9(36), 2002.12 P.19-28	タイプB	母 板:ショットブラスト, 錆止めペイント, ショットブラスト, 赤錆, 仕上げペイント 連結板:平行波形加工
11	経年無塗装耐候性鋼材を用いた高カボル ト摩擦接合継手のすべり耐力試験	鋼構造論文集 16(63), 2009.09 P.37-48	タイプB	母 板:ブラスト, グラインダー, 無処理 連結板:ブラスト, 無処理
12	添板摩擦面にアルミ溶射を施した高カボル ト摩擦接合部のボルト配置とすべり係数に 関する研究	鋼構造論文集 24(93), 2017.03 P.55-63	タイプB	母 板:ブラスト 連結板:アルミ溶射
13	連結板接合面にアルミ溶射を施した高カボ ルト摩擦接合継手のすべり係数およびリラ クセーション特性に関する実験的研究	鋼構造論文集 24(96), 2017.12 P.81-90	タイプB	母 板:ブラスト, 無機ジンク 連結板:アルミ溶射
14	薬剤処理を施した高カボルト摩擦接合の	鋼構造年次論文報告集,第1巻,	タイプB	母 板: グラインダー, 黒皮剥離剤, 錆発錆促進剤 連結板: グリッドブラスト, 錆発錆促進剤
14	摩擦面に関する基礎的研究	1993.07 P.7–14	タイプA	表面:グラインダー, 黒皮剥離剤, 錆発錆促進剤 裏面:グラインダー, 黒皮剥離剤, 錆発錆促進剤
15	摩擦接合接触面のプライマー除去方法の 検討	鋼構造年次論文報告集,第2巻, 1994.11 P.651-658	タイプB	母 板:エッチングプライマー, ショットブラスト, グリッドブラスト, グラインダー 連結板:エッチングプライマー, ショットブラスト
16	フィラーを有する高カボルトー面摩擦接合 継手のすべり耐力	鋼構造年次論文報告集,第14巻, 2006.11 P.639-646	タイプB	母 板:無機ジンク 連結板:亜鉛メッキ(リン酸塩処理)
17	亜鉛めっきHTB及び接合面を暴露後に組 立てた継手のすべり耐力	鋼構造年次論文報告集,第19巻, 2011.11 P.289-294	タイプB	母 板:無機ジンク 連結板:亜鉛メッキ(リン酸塩処理)
19	追加孔を有する高力ボルト摩擦接合継手 のすべり耐力実験	鋼構造年次論文報告集,第24巻, 2016.11 P.37-44	タイプA	表 面:金属溶射(Al.Mg合金) 裏 面:無機ジンク
21	高力ボルト摩擦接合部発錆処理面に及ぼ す諸変数の影響	日本建築学会近畿支部研究報告集 2013 P.457-460	-	母 板:グラインダー, 自然発錆 連結板:グラインダー, 自然発錆
22	表面処理・締付け施工法を変数とした高力 ボルト摩擦接合部のすべり実験 : その1 実 験概要と締付け施工法による影響	日本建築学会学術講演梗概集. C-1 2010.09 P.655-656	タイプA	表 面:ショットブラスト+自然錆, グラインダー+自然錆 ショットブラスト+薬品錆 裏 面:ショットブラスト
23	表面処理・締付け施工法を変数とした高力 ボルト摩擦接合部のすべり実験:その2表 面処理による影響	日本建築学会学術講演梗概集. C-1 2010.09 P.657-658	-	-
24	硬さが異なる鋼材間の摩擦係数に関する 基礎的研究	日本建築学会構造系論文集,第494号, 1997.04 P.123-128	タイプA	表 面: ブラスト処理 裏 面: 波形突起
27	異種接合面処理における摩擦接合継手の すべり耐力試験	 日本道路会議論文集(CD-ROM), 第29巻	タイプB	母 板:グリッドブラスト、有機ジンク(2種ケレン), 1種ケレン、ブリストルブラスト 連結板:無機ジンク(1種ケレン)
28	高力ボルト摩擦接合継手への 改良した錆促進剤の適用に関する検討	駒井ハルテック技報, Vol. 7, 2017 P.45-52	タイプB	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
29	非めっき構造物とめっき構造物境界部にお ける溶融亜鉛めっき高力ボルト摩擦接合す べり耐力に関する実験	日本建築学会大会学術講演梗概集, 材料 施工 2013.08 P.1187-1188	タイプB	母 板:亜鉛メッキ(リン酸塩処理), ジンクリッチスプレー塗装 連結板:亜鉛メッキ+グリッドプラスト

試験体形状: タイプA:母板の表面と裏面で接触面仕様が異なる異種接合面継手 タイプB:母板と連結板で接触面仕様が異なる異種接合面継手

2-4 異種接合面継手に関する施工の実績調査

2-4-1 実績調査の方法

当部会の鋼橋製作会社6社(駒井ハルテック,巴コーポレーション,日本ファブテック,三井E&S 鉄構エンジニアリング,宮地エンジニアリング,横河ブリッジ)を対象にタイプAおよびタイプBの 施工採用実績に関する調査を行った.なお調査対象期間は過去10年程度である.

2-4-2 実績調査の結果

タイプAに関して表 2-4-1 に示す通りの結果が得られた. 道路橋では外面を無塗装仕様としたタイプ A の継手の採用が複数確認された. 鉄道橋では, 無機ジンクと有機ジンクを組合わせた事例があった. これは, 将来の継ぎ足しを想定し内面を無機ジンクとしていた箱断面橋脚の端部を実際に継ぎ足すにあ たって, 橋脚外面を現場施工で有機ジンク(高摩擦型)とし, 内外それぞれで母板に対応する接触面の 連結板を使用した継手であった.

また,調査の結果,耐候性鋼を用いた箱桁における接触面仕様の使い分けが発注者の意向で見送られた事例があったことも判明した.タイプAの採用にあたっては,過去の採用事例やすべり耐力試験結果も参照しつつ,発注者と慎重な協議を行うことが求められている.

タイプBに関して表2-4-2に示す通りの結果が得られた.道路橋では、無機ジンク塗布された連結板に相対する母板の接触面仕様として、ブラスト、動力工具、有機ジンク、赤さび、金属溶射といった様々な処理の実績が確認された.ここで動力工具とは、グラインダー等の一般的な回転式工具によって仕上げた接触面とブリストルブラスター等の縦回転式工具によって仕上げた接触面の双方を指す.図2-4-1に回転式工具と縦回転式工具の写真を示す.動力工具については最多の3社で実績があり、現場施工に適した動力工具がタイプBの継手で多用されている状況がうかがえる.金属溶射と無機ジンクの組合せは、鈑桁橋梁の新設工事におけるものであり、無機ジンク仕様の連結板に対し、母板の接触面仕様を一般部に合わせて金属溶射とした事例であった.鉄道橋では、無機ジンクを塗布した連結板に、母板にはブラスト、動力工具、有機ジンクを含むタイプBの実績が確認された.動力工具については2社で施工実績が確認された.以上のように、道路橋および鉄道橋ともに、補修・補強工事での連結板は、無機ジンク以外の接触面を適用した実績はなかった.

なお,道路橋においては,既設橋脚への横梁の追加工事に際して,赤さび(自然さび)の母板に対し 連結板を無機ジンクとすることが検討されたが,最終的には実績不足から先行工区に合わせて連結板も 赤さびとしタイプ B の適用を見送った事例があったこともわかった.

	ブラストと 無機ジンク	赤さびと 無機ジンク	有機ジンクと 無機ジンク	金属溶射と 無機ジンク
道路橋	1社	2社	0社	2社
鉄道橋	0社	0社	1社	1社

表 2-4-1 異種接合面継手タイプ A の施工実績

	ブラストと 無機ジンク	赤さびと 無機ジンク	有機ジンクと 無機ジンク	金属溶射と 無機ジンク	動力工具と 無機ジンク
道路橋	2社	2社	1社	1社	3社
鉄道橋	1社	0社	1社	0社	2社

表 2-4-2 異種接合面継手タイプBの施工実績

図 2-4-1 動力工具の写真(左:回転式工具、右:縦回転式工具)

2-4-3 各接触面の現場施工に関する調査の方法

異種接合面継手の適用性の検討にあたり,当部会では各接触面の現場施工時の施工性を調査,整理した.当部会の鋼橋製作会社,三井E&S鉄構エンジニアリングの工場製作技術者および現場架設技術者 を対象に各接触面の作業性能に関するアンケートを実施した.評価項目は作業性と環境性に大別し,作 業性は,作業速さ(面積/時間)と必要な設備,環境性は,騒音と粉塵等の飛散に分けた.

2-4-4 各接触面の現場施工に関する調査の結果

表 2-4-3 に示すように、8 種類の接触面に関して、現場施工時の作業性能を整理した.評価対象の接触面は、素地系として(a) ブラスト(素地調整程度 1 種, ISO Sa2 1/2 相当 ¹⁾)、(b) 動力工具(素地調整程度 2 種, ISO St3 相当)とした. 被覆系としては、(c) 無機ジンク、(d) 有機ジンク、(e) 赤さび(自然さび)、(f) 赤さび(薬剤さび)、(g) 金属溶射を対象としている. それぞれ、次節で示す異種接合面の採用実績と今後の動向を考え選定した. 被覆系では、下地処理として素地調整程度 1 種または 2 種がなされていることを評価の前提としつつも、素地系との区別のため下地処理後の工程を評価することとした.

まず、素地系の評価結果について述べる.(a) ブラスト(素地調整程度 1 種)に関しては、継手耐力と 作業速さにおいて優れており塗装系の下地処理も含め、継手耐力としては最もよい処理方法である.し かしながら、騒音と粉塵等の飛散がともに大きく、必要な設備も多く(通常は工場で施工)、また大型 でもあり、現場作業としては最も課題が多い処理法であると考えられる.(b)動力工具(素地調整程度 2 種)については、環境性はやや改善され、設備が小型であり作業性もよく実績が多いが、継手耐力が低い のが現状である.縦回転式工具については、一般的な回転式工具より継手耐力は向上するものの、作業 速さが劣るとの指摘もあった.以上のように、素地系は、継手耐力と現場作業性は、相反する結果にな ると考えられる.

		他王	作弟	美性	環均	竟性	
接触面仕様		離于耐力	作業速さ (面積/時間)	必要な 設備	騒音	粉塵等 の飛散	備考
美地玄	(a)ブラスト(素地調整程度1種)	0	0	×	×	×	ケレン後に養生が必要
养地不	(b)動力工具(素地調整程度2種)	×	Δ	0	Δ	Δ	ケレン後に養生が必要
	(c)無機ジンク	0	Δ	×	0	Δ	素地調整程度1種含む、スプレー塗り
	(d)有機ジンク	×	Δ	Δ	0	Δ	素地調整2種含む、スプレー塗り、 高摩擦型でない一般塗料
被覆系	(e)赤さび(自然さび)	0	×	0	0	0	素地調整程度2種含む, さび厚24 µ m以上
	(f)赤さび(薬品さび)	0	Δ	0	0	0	素地調整程度2種含む
	(g)金属溶射	0	Δ	×	Δ	Δ	素地調整程度1種含む, 封孔処理を行わない場合
評	西記号の意味					_	

表 2-4-3 各接触面の現場施工時の作業性能

○:高い,△:普通,×:低い ・作業速さ 継手耐力 ○:少ない、△:普通、×:多い 必要な設備 粉鹿等の飛散 ○:少ない, △:普通, ×:多い

 新音

○:速さ、△:普通、×:遅い ○:小さい, △:普通, ×:大きい

つぎに、被覆系の評価結果を述べる.(c)無機ジンクは継手耐力が高く、騒音も小さい点が評価され たが、必要な設備が多いとされた.また、下地処理は素地調整程度1種で行う必要があり、先に述べた ように現場での作業性としての課題も多い.よって現場で採用されることは稀であると考えられる.(d) 有機ジンクは、高摩擦型ではない通常の有機ジンクリッチペイントを対象としたため継手耐力が低いと 評価された.ただし、有機ジンクの下地処理は素地調整程度2種であり、無機ジンクより現場での作業 性はよい.なお、高摩擦型の有機ジンクは現在使用頻度が低く、既設橋梁の補修・補強工事のように小 ロットでは入手困難と判断し,高摩擦型でない有機ジンクで検討した.(e)赤さび(自然さび)については, 多くの項目で高く評価されたが、数か月にわたり発せいを待つ必要があることから作業速さが最も低い とせざるを得なかった.(f) 赤さび(薬品さび)は数日程度で発せいするため、多くの項目で高く評価され るとともに作業速さも普通と評価された.なお、薬品さびを用いたボルト継手は、建築分野では多くの 実績はあるが、土木分野では実績がほとんどないのが現状である.(g)金属溶射は、下地処理は素地調 整程度1種であり、また、必要な設備が多く環境性も普通であり、作業性と環境性に関して高く評価さ れた項目はなかった.ただし、封孔処理を行わない溶射面の継手耐力は高いと判断した.

2-5 まとめ

本章では、本報における異種接合面継手の定義を示し、タイプ A とタイプ B に分類した. そして、 すべり耐力の観点から異種接合面継手の適用性について調査した既往の報告をまとめ, タイプ B に関す る実験的研究の報告が多いことなどを明らかにした.そして,異種接合面継手の採用実績について調査 し、現場施工に適した動力工具がタイプ Bの継手で多用されていることなどを示した.また、各接触面 の現場施工時の作業性能について工場製作技術者および現場架設技術者の意見を収集し、その長短を整 理した.

参考文献

1) 日本道路協会:鋼道路橋防食便覧, 2014.3.

第2章 付録 先行研究で報告されている異種接合面継手の実験データ

	THE PROPERTY AND A DESCRIPTION OF THE PR	CONTRACTOR DURING TOWNS	- 10 F O M X					
著者、所属	府 形明(政道建設·運輸施設整備支援機構), 齐藤 雅光, 横山 秀高, 杉木 一郎, 能島 隆光, 塔永 秀彦, 長崎 英二							
掲載訪,公開年	土木学会論文集 A1 Vol.68, 2012							
試験体形状	<u>4</u>	0 0 0 0 0	- -) <u> </u>	Marty PT of			
	試験体の種類1			試験体の種類2				
試験体证分	91	7A	試験体区分	91	7A			
SO 18	344	akan	N1/E	30	490Y			
X-OURDEDGE		and the second second	▼<9/用計和方法#					
常用面包用	6.2	単数シンク	草原类的使	- 6.0	1100×229			
on distances.	8.5	単語アルミ活射	010232020	4.0	原語アルで活動			
Contraction (最大領	0.51	1000000	展大規	0.48			
小小小学師	平均領	0.50	TAUGR	平均県	0,47			
	展小镜	0.49		展小橋	0,47			
	2006/07/01/08/3			X税住の機能4				
試験体还分.			制度建筑分					
新维			101					
学 州与7隆洪舰为组建11			非 +1.0/国初和大组建					
摩擦墨奶發	母板		摩擦面似现	母权				
1.00000000	連結板			連結板				
	最大值			最大值				
すべり係数	平均值		すべり係数	平均值				
	最小值			最小值				
84	X級体の種類1,2の違いは ポルト式径 種類1:#245 種類2:#265							
		100 100 100 100 100 100 100 100 100 100						
消火增加	要約アルミ酸合金活動を無し		の導入能力確認試験					
請文證日 著者 - 川属	客助アル三届合金消射を無し 肉 河明(鉄道建設・運輸集)	 二二二二 二二二 二二 二 二		. AR 20				
消欠週日 著者・川菜 掲載記、公開年	契約アルと総合金消射を無し 市 邦明(設造建設・遅敏施) 土木学会論文集A1 Vol.69	二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	(の導入能力者)認知 (の導入能力者)認知 (の、法本 離余、河村 健一	. AR 20				
議文總印 著者・州道 規載記、公開年 以限体形状	要約アル 2 間合金消射を無い 素 所明(鉄道建設 - 運輸施 土木学合論文集 A1 Vol.69 □			. ▲# 2				
議文總加 署者・州属 規載説、公開年 以限体形状	愛知アルミ腺合金消射を無し 南 邦明(原道建設・運輸集 土木学会論文集A1 Vol.69							
議文總訂 董者 · 州國 總裁證、公開年 訓験体形状 訓験体区分								
第支通信 第者:州道 挑載課,公開年 訓練体形状 訓練体匠分 編編	マル こ 間合金消射を無い 南 邦明(鉄道建設 - 運輸施 土木学会論文第A1 Vol.69			 ・ ・ ・				
	マル 2 間合金消射を無い 南 邦明(鉄道建造 - 運輸施 土木学会議文集 A1 Vol.69 ロー 田			· 商井 武争 · 商井 武争 · · · · · · · · · · · · · · · · · · ·				
	案紙アル E 聯合金湾射を無し 南 邦明(鉄道建設 - 運輸施 土木学会議文集 A1 Vol.69			·				
議文通訂 著会・州選 構載課、公開年 試験体形状	家師アル 2 総合金湾射を無い 南 邦明(鉄道建造 - 道味施 主木学会論文庫 A1 Vol.69 マロ ロロ ロロ 取除体の構現 1 タイ 名子4 音楽画	二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二						
議交通日 署会・州選 掲載課、公開年 以現体形状 以現体区分 報題 てべく(用用形によ) 産業系列場		本高力ボルト専用設合部で 設想者主任得用)、株面 6 2013 これ、1、4、4 これ、1、4 これ、2013 これ、201 これ、201 これ、201 これ、201						
議会通知 署会・州選 構動記、公開年 以現体形状 以現体記分 取場 てく(用明和加速) 常業型取得 すべり函数		本語のボルト専家設合部で 設想者主道機構制、株式 参 2013 この13 この13 この13 この13 この13 この1 この						

1000		 4	7.1(38	
	展小技	1 101 102 UN	新小師	
a san tara ang bi	区期体の推問3	 and the second sec	試験住の機能4	
DOM: NO: 10		試験体现分		
11.11		11/1		
サーロノ弾き組力はよ		十十0/用030九10月		
MALINE STOLET ME	母板	NY 187 187 1 10	母板	
14-18-18-19-19-14	連結板	19F-19R-047/0-9K	速枯板	
	最大值	S	最大值	
すべり係数	平均值	すべり係数	平均值	
110.00000000000000000000000000000000000	最小值		最小值	

リラクゼーションのボルト動力低下の確認をする試験のため、すべり係数に関する報告はされていない。

调考

論文題目	接合表が算材粗更と無機	ジンクリッチペイント面の高力	ボルト摩擦接合量手のすべり	系数の提案				
著者・所属	月波 宽夫(版神高速技术	センター)、行蘇 晋色、木村	取,山口 胜司,杉浦 邦山	t.				
掲載誌, 公開年	土木学会論文集 A1 Vol.70,2014							
試験体形状								
	試験体の接頭1			試験体の種類2				
試驗体区分	2	イプB	試験体区分	3	イプB			
18 M		89400	18110		33400			
W-CHURDHOLDHUE		+	WHY/MRMARLE		+			
and interimental later.	0.5	〒.0199千-(遺営)		0.92	F (319)/F -(苗市)			
222.0.8	20.5	数機ジンク	492.04	建铝板	新棚ジンク			
	最大祖	0.30		最大旗	0.28			
マベリ係数	平均值	0.28	すべり係数	平均值	0.26			
	最小値	0.27		最小值	0.24			
	10股体の推动3			試験体の機能4				
試験体質分	9	178	試験神区分		178			
1019	1	\$5400	1011	S\$400				
学习与/除的职力的#			(1-1-1)/制作用力注意		+			
	65	開始カップブラン	100 Mar 10 Mar 1	66	y 14H45/0			
Assess	建结核	無機ジンク	waren a	速結板	無機ジンク			
	華大雄	0.71		展大協	0.45			
ずべり係数	平均镇	0.20		平均强	0.45			
	展小値	0.19		親小師	0.42			

97.80	片面に金属溶射を用いた高力ボルト摩擦接合線手のすべり係数とすべりメカニズムに関する実験的研究								
著者 - 所属	東野住夫(焼河ブリッジ)、小坂県(阪神高波道路株式会社)、山口線司(大阪市立大学)								
利载过,公例年	病点工学論文集Vol. 61A, 2015								
試験体形状									
	試験体の種類1			試験体の種類2					
試驗体区分	9.	イプB	試験体区分	9	イプB				
62.18		F441	10.18		不明				
中一月/睡的肥力出来…	0	644	1.111月1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日		0.644				
	- 0%	無機ジング	The last of lost line	一份账	無機ジンク				
****	建筑板	Al-MgBH	482.08	建粘张	Al-Mel8H				
	最大级	0.74	r ≺0620	最大雄	0.66				
マベリ供数	平均值	0.67		平均值	0.62				
	「単小値」	0.60	A CONTRACT ST	藝小雄	0.60				
	(の)の (1000)			2010年の11月4					
17.98(18)(E.S)		(78	10株市20分	9	178				
間積	2	FIJI .	11/8	不明					
1-1.040.805.0.8	0	644	T-11/3008(自)(2)	(1.644				
the second second	谷坂 無機ジンク		Direct and and two	05	無機ジンク				
warmon.	建防板	Al-Mc/RH	ar in m no da	連結板	Al-Mg/8H				
	最大提	0.63		順大道	0.67				
マベリ張数	平均值	0.63	半べり係数	平均值	0.65				
	表小恒	0.60		最小慎	0.63				
	試験体の種類5			試験体の種類6					
試験体区分	<i>\$</i>	(プB	試験体区分	灾	イプB				
餌種	2	下明	調種		不明				
すべり/陽伏射力比多	0.	644	マベリ/時伏配力比目	(0.644				
HAR SERVICE, AD. HER	母板	無機ジンク	100 May 100 AM 100	母板	プリストルプラスト				
NP CPUINT ACT OF	建结板	Al-Mg溶射	14-78-74-74-76	油粘板	Al-Mg溶射				
	最大值	0.56		最大值	0.82				
オペリ係数	平均组	0.55	すべり活動	半肉油	0.81				
	最小级	0.54		農小信	0.79				
18.4	 35期後の後期1は、一部 35期後の後期2は、当時 35期後の後期3は、当村1 35期後の後期3は、当村1 35期後の後期3は、当村1 	初小県 0.54 田小信 0.79 ・試験体の種類1は、一部として着色剤を添加した無機ジンクの試験体を含む。 -							

and constants	常機シンクリッチペイント面とそれと異なる派台面処理がなされた高力ボルト摩擦蛋台撃手のすべり動力試験						
著者・所属	丹波寛大(阪神高速道路管技術センター)、木村駅(大阪市立大学大学院)、杉山祐樹(阪神高速道路)、山口隆司(大阪市立大学大学院) ホホール(1)、市内(1)、1000						
揭載誌,公開年	構造工学論文集Vol. 58A, 2012						
試験体形状		2 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	8 8 8 8 8 55 (mm), p = 高力ワンサイト e = 60 (mm), p =	80 mm, t1 = 28mm, t2 = 3 - ボルトの試験体では, 90 mm, t1 = 25mm, t2 = 3	6mm 2mm		
	試験体の種類1			試験体の種類2			
試験体区分	24	ブB	試験体区分	9	イプB		
與種	SS	400	洞種		S\$400		
ドベリ/時状射力比多	0	.66	すべり/藤伏配力比良	0.66			
	母板	2種ケレン	摩擦面站程	母板	グリッドプラスト		
14-10-00X048	凍結板	無機ジンク		連結板	無機ジンク		
	最大值	0.54	すべり係数	最大值	0.69		
すべり係数	平均值	0.51		平均值	0.68		
	最小值	0.45		最小值	0.66		
	10秋休の株用3			30股後の種類4			
試験体区分	91	78	試験伴区分	9	178		
詞種	\$5	400	調性	1	IS400		
1~19/陳休肥力出点	0	.66	すべり/除伏射力は点		0.66		
-	母板	有機ジンク	10 10 10 10 10	母板	プラストルプラスト		
14 10 2011 K	建防板	気機ジンク	14 19 20 0 42	連結板	無機ジンク		
	最大值	0.38		最大領	0.59		
すべり低数	平均链	0.37	すべり係数	平均值	0.57		
	最小值	0.35		最小值	0.54		
備考	- 試験体の種類1の中には。	0.35 一部として高力ワンサイト	ポルトの結果も含んでいる	最小值	0.54		

100 C 100 C	橋半国大郎(京都大学大学院)。山口隆司(大阪市立大学)。新木支弥(横河ブリッジ)。石原一併(日立造転)。杉浦邦征(京都大学)							
10.00 C - 2000	構本因太郎(京都大学大学説)、山口極号(大阪市立大学)。鈴木支奈(僕河ブリッジ)、石原一体(日立造船)、杉浦邦征(京都大学) 構造工学協文集Vol.60A,2014							
1000 0 0 0				4				
	e = 55 (mm), p = 80 m	m, 15 = 22mm, 12 = 12mm						
	30時体の機能1			試験体の推開2				
DEMPTH DE 11		4.78	2010/04/25.57	2010 - C144,000	SERVICE - CAARDO			
To State Brown A	12 GE - 546441	v, weapp swirzy 2 wN-nB	T-10.00 Parts of A	0.72	wE-nB			
· · · · · · · · · · · · · · · · · · ·		G3811.515	A - statote the p	05	3875285			
厚肤生活理	建能板	グリッドプラスト	建建型印刷	通航板	グリッドプラス			
	最大组	0.49		華大雄	0.43			
中国行弹器	平均領	0.44	下不可供用	平均值	0.41			
	展小儀	0.40		重小值	0.40			
	20時(4-0)時間3			15原注の推測4				
100km25.0	3	478	- 25.99.94 区 分	2	178			
14 H	@板:SMA49	0、康紀板:SM490	1918	仰板:SMA490	. 連結板:SM490			
中小时/除水肥力出身	0.7	2 wG-n8	中小节/确然规治运道	0.72	wN-nP			
建建制的 带	-06	2871->83	RRESH	96	保護性さび			
	通机线	グリッドプラスト		建机制	無機ジンク			
52200220	服大镇	0.43		最大語	0.51			
4~198	무의해	0.43	4~108	平均條	0.47			
	単小田	0.42		10.01.00	0.40			
MERCO	30804-0.98393	1.178	1448-14-07-02	20月1日1月1日日日	1.40			
100012.0		478	108040.77	9178				
8018	10 M	0, MINUT SWIND	and a second second	14 M 1 2000410	Manufaction and the			
A CONTRACTOR	4.4	1851.0400	A		NAME AND ADDRESS OF			
章祖美的增	84.0	1000ya	尊称面后被	1815.67				
	8110	0.42		8110	0.49			
THUGH	2104	0.40	T-<162	至約個	0.43			
	扁小師	0.39		第小版	0.37			
	20時1年10世167			記録律の種類者				
30秋林汉:分	9	478	化和排放分	9	178			
10.0	母板: SMA45	0、連紀板:SM490	10.00	母板:SMA490	. 連助板: SM490			
1-53/预防服力出进	0.7	2 w8-rP	#159/WRMAR#	0.72	wN-nA			
WIE SAM	母板	グリッドプラスト	REFER	母核	保護性さび			
19992446	速站板	無機ジンク	Contraction of the	进站板	アルミ活射			
	最大語	0.53	1.0000000000000000000000000000000000000	最大信	0.84			
イベリ活動	무지열	0.47	主义在建立	平均值	0.82			
	単小類	0.41	1	銀小橋	0.80			
10 Martin Co.	20010-0708-007		Maayo.	ACROSCI AND	7.78			
10.00 H (A. 17	DIE - SMAR	A JERRE - SMILLA	10,40 M (0, 17	INF - SMARM	alester - Station			
T-11/Market Fair d	4 2 A 2	2 wE-rA	King Charles and	0.22	wG-nA			
and the second sec	05	38762418		0.0	282228			
原原王幼稚	10.00	アルと古村	草浆法的材	1410.00	74188			
	最大保	0.78		副大雄	0.82			
1-1-1-1-12	平均值	0.71	マベリ体数	平均值	0.79			
	11-1-12	0.59	CORPORATION AND AND AND AND AND AND AND AND AND AN	81-0-58	0.75			
	10.0018-05-00.0011	Second L			ð.			
10001402.9	3	イブル						
10.18	ID IR : SMARS	0、浦利街:SM490						
4-0月/国的职力注意	0.7	2 w8-eP						
常用正规器	46	グリッドプラスト						
NA KARASA	1866	アルミ溶射						
	最大量	0.86						
1-1-1-2-2	4459	0.86						
	展小園	0.85						
備考								

論文題目	摩擦面の状態が高力ポルト	継手のすべり耐力に及ぼす	影響					
若者・所属	南 邦明(サクラダ), 森 猛, 杉谷 隆夫							
揭戴註。公開年	第59回年次学術講演会,2004							
MBORD		370 40.75.75 	1200 50 75 75 40 370 6 6 6 6 8 21					
	题-1 試験体影状							
	試験体の機師1	0.00.000	E average and	試験体の種類2				
試験曲話分	24	(78	10.8838323 计					
調理	55	5400	調燈					
すべり/時代射力12月		+	すべり/時伏船力比多					
岸撤置処理	母板 遠結板	有機ジンク 無機ジンク	摩擦過処理	母板 油結板				
1.1	最大值	0.53	A CONTRACTOR OF	最大值				
すべり係数	平均值	0.50	すべり係数	平均值				
	最小值	0.44		最小值				
	試験体の種類3			試験体の種類4				
試驗体区分	2		試験体区分					
銅植			銅稜					
すべり/除伏耐力比点			すべり/降伏動力比声					
的 封闭 新花 (10)	母板		##茶杯用	局板				
Per terum Alt-Alt	速結板		19-29(20170-18)	連結板				
	最大值			最大值				
すべり係数	平均值		すべり係数	平均值				
	最小值			最小值				
情考			(株価数 (イーリ 第2))、 イージ (集2)) (株価数 (イーリ) 第2))、 (日本)					

論文題目	異種接合派処理を有する摩擦接合額手のすべり耐力試験						
著者・形異	未村 能(大贩市立大), 山	口 隆印, 丹羽 寬夫, 村	な 政秀、関上 直迭、杉山 补	6個			
掲載誌,公開年	第66回年次学终講演会,20	11					
試験体形状	(a)上面図 (a)上面図 (b)例面図 図-1 供試体形状						
	試験体の種類1			試験体の種類2			
試験体区分	\$^	イプB	試験体区分	\$	イプB		
8449	S	3400	彩板	3	i\$400		
すべり/時代射力12月		+	オペリ/時伏耐力比β				
also bela 200 per 100	母板	2種ケレン	岸接面処理	母板	有機ジンク		
14-19-10-20-20	遠枯板	無機ジンク		遠結板	無機ジンク		
	最大值	0.54	A CONTRACTOR OF	最大值	0.38		
すべり係数	平均值	0.53	すべり係数	平均值	0.36		
	最小值	0.49		最小值	0.35		
	試験体の種類3	1010.0		試験年の目前4			
化基件规范	. 9 .	(70	10原体区分	9	イブ8		
21.01	5	5400	复卷	5	5400		
学习10/网络肥力说道:		•	オートリノ市休然大法書		*		
CONTRACTOR OF THE	母框	1種ケレン	and the second second	市街	プリストルプラスター		
APRILISS R.	建粘性	無機ジンク	A#28.00.00.00	運動板	無機ジンク		
	最大雄	0.69		最大領	0.59		
すべり係数	平均值	0.68	芋べり係数	平均維	0.57		
	無小値	0.65		展小師	0.54		
84							

論文題目	仕様の異なる摩擦接合面の継手性能に関する試験報告					
著者・所属	清水 繊維(サクラダ)。石炭	- 101 -				
掲載誌,公開年	第67回年次学術講演会,201	2				
試験体影状			→ → → → → → → → → → → → → →			
	試験体の種類1			試験体の種類2		
試験体区分	21	7A	試験体区分			
102 M	SMAA	00AW	2212			
学兴业/输出和注意		•	· 中斗节/南伊莱达出来			
	A.0.	無機ジンク		动板		
WHERE R	8.0	教治装	14 m 02:0-0	建枯枝		
	最大组	0.56	CONTRACTOR OF	最大语		
下ペリ体肌	平均值	0.55	すべり係数	平均值		
	载小镇	0.55	• • • • • • • • • • • • • • • • • • •	藏小编		
	試験体の種類3		調整体の種類4			
試験体区分			試験体区分			
圓樓			資格			
すべり/陰伏射力比点			すべり/論供耐力比合			
座坡高加田	母板		麻烦毒加强	母板		
呼孫回処理	連結板		呼孫叫処理	連結板		
	最大値			最大値		
すべり係数	平均值		すべり係数	平均值		
	最小值			最小值		
编号	無塗装部はプラスト後に 2 週間の屋外暴露を行い 表面粗定を60 μm(Rzjs) 粗定とした。					

95,0,3010	高すべり係数接合部に関する実験的研究(母村の表面処理がすべり特性に与える影響)				
著者・所属	平井敬二(西日本工業大学)、宇野幅方(新日本製鉄)、竹内一郎(新日本製鉄)				
用载款、公開年	編構造論文集第9巻,2002年12月				
試験体形状			200 00 00 200 00 00 00 100 100	алияни (и халани (и)) халани (и халани (и)) халани (и) халани (и) хала	
	試験体の種類1			試験体の種類2	
試験体区分	2	イプB	試験体区分	g.	イプB
與積	5	N400	詞權	S	N400
キベリ/陽伏耐力比算		0.47	オペリ/降伏超力比算	().47
100 100 100 1-0 100	母板	ショットプラスト	ada nati vila kut para	SN4 0.4 母板 建筑板	前止めペイント
Ne ter tal tal yorke.	連結板	平行波形加工	環境 すべり/時(K耐力比点 摩擦面処理 すべり係数	連結板	平行波形加工
	最大值			試験体の種類2 タ 8 一 一 一 一 一 一 一 の 板 - 一 の 板 - 一 の 板 - 一 の 板 - 一 の し 、 の の の の の の の の の の の の の	
すべり係数	平均值	1.12	すべり係数	平均值	0.88
	最小值			最小值	
	試験体の種類3			試験体の種類4	
试験体区分	2	イプB	試験体区分	A.	イプB
674 E	5	N400	銅種	SI	N400
ホペリ/時伏胜力比点		0.77	すべり/時伏耐力比彦	().77
HIN HIS COLLARS SHE	母板	ショットプラスト	WE HAVE ALL ANY THE	母板	赤鹞
the life that and a com-	建晶板	平行波形加工	MACIN DE XO PR	連結板	平行波形加工
	最大值		第一 100 100	最大值	
	平均值	1.17	すべり係数	平均值	1.11
すべり係数				and a little	

10.4011 -0.000	編構造論文集第9巻,2002年12月				
P04025 20954	MMADE ARTICLE	14679			
試験体形状	0000 0000 00000 00000		0 C 0 C 0 C 0 C		
	試験体の種類5			試験体の種類6	
試験体区分	タイプB		試験体区分	9	イプB
编档	3	N400	解释	SN400	
オペリ/時代総合は非		0.77	(▼<4/W040500.0	0.77	
	荷蕉	請止めペイント	O M T I I M	母性	位上げべイシト
NUMBER OF	浦私佐	平行波形加工	ALL DE LE CONTRACTOR	2000 中国(体形以下) (武装体の種類6 タイ SN 自然 道規版 単大語 平力法 展小語 20時年の種類8 タイ SN	平行波形加工
	最大信		2735/06N7.4	9 	20.00
すべり係数	來均值	1.05	すべり併数	平均值	1.03
	最小级		R-7 2824 IK映体区分 SU版 すべり、例び和力に身 定様型活発 すべり係数	最小協	
	試驗体の機能7	- N		記録体の構成8	
就赎体贸分	9	イブ8	赵联体区分	9	イプ目
#19L	5	N400	8.5	5	N400
中国1710年8月1日月	100 m - 100 m	0.77	年代47個96M25日月		0.77
and the second second		Start	No. of Concession, Name	46	8.00
	連結板	平行波形加工		唐純板	早行波形加工
	最大值			最大值	
すべり係数	平均值	0.41	すべり係数	平均值	0.42
	最小值			1番)	

論文題目	高すべり係数接合部に関	する実験的研究(母材の表面処	理がすべり特性に与える影響)		
著者・所属	平井敬二(西日本工業大学),宇野暢芳(新日本製鉄)、竹内一郎(新日本製鉄)				
掲載誌、公開年	期構造論文集第9巻,2002	¥12月			
試驗体形状	20 000 000 	2000 00 200 00 200 00 00 00 00 00 00 00 00 00	200	¹⁰ / ₂ 00 00 ¹⁰ / ₂ 00 	
	試験体の種類13			試験体の種類14	
試驗体区分	タイプB		試験体区分	2	イプB
銅機	5	5N400	詞種	SN400	
すべり/除伏起力に含	-	0.77	すべり/陽伏配力比多	0.71	
·····································	母板	仕上げペイント	10 10 TO 10 10		ショットプラスト
PP SHOUND OF	連結板	平行波形加工	1 MAIN DECK		平行波形加工
Access102.000	最大绩			母板 連結板 豊大値 平均値	
すべり係数	平均值	1.13	すべり係数	平均值	1.25
	最小值			最小值	
	試験体の種類15			試験体の種類16	
試験体区分	9	イプB	試験体区分	タイプB	
調種		SN400	銅種	5	N400
14月1時代創力比多		0.71	すべり/時伏配力比点		0.75
000 007 232 4-5 100	母板	請止めペイント	and a state lists from state	母板	ショットプラスト
New Tel DIT Sector	建晶板	平行波形加工	144 (Mr (10) 10) AM	連結板	平行波形加工
	最大価			载大值	
すべり係数	平均值	1.13	すべり係数	¹⁰⁰ ¹⁰⁰	1.26
	最小值			最小值	1
備考	試験体13は波目ピッチ1.5	、試験体14,15は母材板厚32m	um(F10T),試験体16は母材板厚	32mm(F14T)	

論文題目	高すべり係数接合部に関する実験的研究(母村の表面処理がすべり特性に与える影響)				
著者・形開	平井敬二(西日本工業大学	干丹敬二(西日本工業大学)、宇野報方(新日本製銀)、竹内一郎(新日本製銀)			
掲載誌、公開年	編構造論文集第9巻,2002	年12月			
March W. H.		на зананияниени на на н		(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	
	30酸体の機能17			試験体の優類18	1.14 Mar.
就额体区分	タイプ日		試驗体活合	3	178
新聞	1	5N400	新推	5/400	
オードリ/弾劾部力北京		0.75	才可以/单位数力比表	0.71	
17 18 16 at 18	均低	近朝	10 10 10 10 10		副止めペイント
	透射板	平行波形加工			平行波形加工
	着大道	1000	- spectres -	9 一 母板 連続地 単大雄 平均雄	
すべり係数	平均值	1.10	人々の登録	平均值	0.95
	最小绩		1	最小條	9
	試験体の模倣19	A Darry		試験体の後期20	1.20
基数体现分	9	178	10期体区分	2178	
RIM.	1	SN400	與推	5	N400
11日1月1日1日1日		0.75	「東州リノ陸外般力比重		0.92
and the second second	动性	仕上げペイント	the second states	母板	52717931
a protection of	建防伤	平行波形加工	A REAL PLAT	速結核	平行波影加工
	最大值			最大雄	
すべり張政	平均值	0.93	すべり係数	平均值	1.06
	B-0-W			個小姐	
-	10001417,18,1912-09166	#32mm(/147)_ 308(% 20(228)	2本形式		

論文鑽目	高すべり係数接合部に関する実験的研究(母材の表面処理がすべり特性に与える影響)				
著者・所属	早井敬二(酉日本工業大学)	,字野幅芳(新日本製鉄),竹内-	郎(新日本製鉄)		
掲載誌,公開年	氟構造論文集第9卷,2002年	12月			
試験体形状		200 (41,45,45,55,55) 200 (41,45,45,55,55) 200 (10,45,45,55,55) 200 (10,45,55,55) 200 (10,45,55,55) 200 (10,45,55,55) 200 (10,45,55,55) 200 (10,45,55,55) 200 (10,45,55,55) 200 (10,45,55,55) 200 (10,45,55) 200 (10,45,55) 200 (10,45,55) 200 (10,45,55) 200 (10,45,55) 200 (10,45,55) 200 (10,45,55) 200 (10,45,55) 200 (10,45,55) 200 (1	19] - [200 00 00 00 00 00 00 00 00 00 00 00 00	
	試験体の種類21			試験体の種類22	
試験体区分	2	タイプB		2	イプB
鋼權	8	N400	鋼權	S	N400
オペリ/時伏配力比査		0.92	オペリ/時伏配力比点		0.92
ata tetr III (c) ata	母板	赤錆	御福	母板	第止めペイント
144 Million X2-VB	連結板	平行波形加工		連結板	平行波形加工
	最大值			最大值	
すべり係数	平均值	1.06	すべり係数	平均值	0.97
	最小值			最小值	
	試験体の種類23			試験体の種類24	de la companya de la
試験体区分	\$	イプB	試験体区分	タイプB	
網種	S	N400	鋼種	SN400	
すべり/陽伏嗣力止止		0.92	すべり/陽伏配力比目		0.71
ala adarati dar par	母板	黑皮	100 KK2 KK3 2m 100	母板	ショットプラスト
NA THE OFFICE ALL ALL	連結板	平行波形加工	100 COCULUM 25	連結板	平行波形加工
	最大值			最大值	
すべり係款	平均值	3.12	すべり活性	平均值	1.20
	维小值			赖小摄	
	JCBH9821, 22, 23, 24(J)	jji.2.*			

国文規目	高すべり係数接合部に関する実験的研究(分析の表表効用がすべり特性に与える影響) この時に(ありますまとが) 空気的学(たりまちが) ひあっか(たりまちが)				
著者 • 所属	平月敬二(西日本工業大学)、字野暢方(新日本製鉄)、竹内一部(新日本製鉄)				
周載誌、公開年	編構造論文集第9巻,2002年	12月			
Millio Solo.					
	試験体の機能25	90.0	C255, 528, 54	2010年8月1日開設55	energy in
建糖体医分	9	178	試験体区会	9.	17B
新橋	5	¥400	84	5%400	
オーマノル時代総合はよ		0.71	# < \$ /#008thill#	0.71	
	母板	0.00		母母	親上のペイント
warnow	遗秘依	平行波形加工	44000	 3 TRITERADERTIA 323(8)(3)(2)(4)(4)(2)(3)(4)(4)(3)(3)(4)(4)(3)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)	平行波形加工
and the second second	最大级		The second se	 母板 連結板 最大値 平均値 	1000
すべり供数	平均值	1.20	すべり係数	平均值	1.16
	最小語			扁小情	
	試験体の補助27	22		試験体の場質	
10000年6月分	9	(78	民制体区分		
10.41	5	N400	0.0		
149/18代配方法进		0.71			
Contract of the last	96	果皮	10-10-10-10	416	
and a constant	通知板	平行波形加工	weaters.	潘姑板	
	最大語			最大绩	
すべり係数	平均值	1.18	すべり係数	平均值	
	最小值			日本製錬) 日本製錬) 日本製錬) 日本製錬) 日本製錬) 日本製錬) 日本製錬) 日本製錬) 日本製錬) 日本製錬) 日本製錬) 日本製錬) 日本製錬) 日本製錬の種類法 日本製錬の種類法 日本製作の 日本製作の 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	
编考	試験体25, 26, 27は2面23	¢.			

論文題目	超年無塗装剥候性鋼材を	用いた高力ポルト摩擦接合雛手	のすべり耐力試験		
著者・所属	坂井田実(京都大学),杉浦	邦征(京都大学),山口隆司(大阪	8立大学),村上茂之(岐阜大学),	橋本国太郎(京都大学)	
周載誌, 公開年	網構造年次論文報告書第	16巻,2009年9月			
KW IN THE					
	1000100-000001	erowa		2084年6月11日2	COMMON
100810125-01	4	1/7B	武師御汉令	917B	
1078	51	VA490W	819	SMA490W	
学术专行期代和方法进		0.504	11日月/時代和古田道	0.495	
	46	プラスト	オーリ/後の別たのよ 部務派的理	46	グラインダ
法保证 的证	建放射	プラスト	18 (8 (2) S) (8	通知的	プラスト
	最大語	0.53		2020年40個類2 3 日前 連結長 服大値 平均値 服小師	0.51
すべり係数	平均值	0.51	すべり係数	平均值	0.51
	8.148	0.52		展小師	0.50
	試験体の機能す	- SX		試験体の種類も	1.00
試験体区分	1	トイプ B	試験推荐分	9	1178
調理	51	WAR90W	調燈	51	W0694W
11-11/101000000000000000000000000000000		0.458	1一下/0000000000		0.494
the second second	05	電動ワイヤブラシ	an up to be too	195	手動ワイヤブラジ
W 10 10 10 10	建新新	プラスト		運動板	プラスト
	最大级	0.48		最大值	0.54
すべり作数	-970B	0.47	のすべり耐力以験 市立大学)、村上茂之(岐阜大学) ************************************	平均组	0.51
	展小橋	0.46		最小组	0.47
備考		0.49		81748.	

版井田実(京都大学),杉浦邦	the state of the s	and a state of the	tet i en i desi b te i eni	
The second	征(京都大学),山口隆司(大)	版市立大学),村上茂之(岐阜大学),	.桃本国太郎(京都大学)	
關構造年次論文報告書第16	春,2009年9月			
記録時の提問ち	1970	a second of the	103835-0-18.83.6	1999.A.
31	7 ₿	此動加区分	91	78
SMA	490W	10.00	SMA	490W
0.5	519	T<9/90.81九出点	0	54
母板	魚処理	and set of the lot of the	2000年30人前の秋年70 2000年30人前の秋年70 2000年30日 2000年30 2000年30 2001 2001 2001 2001 2001 2001 2001 20	90350
建枯枝	プラスト	in marcod		和北3月
最大级	0.57	100 C 100	連結权 最大値	0.48
平均值	0.53	すべり係数	平均值	0.43
新小橋	0.50		展小位	0.37
民務体の推測		d	試験体の優加	
		以限伸展分		
		調機		
		11《引/開放配力洗涤		
1061	1	AN ADDRESS AN OWN	49.60	
運動板		10 (K, K) (K) (K)	達站板	
最大值			最大值	
平均储			平均值	
偏小緒			展小値	
				経験体の機能を 経験体の機能を 経験体の機能を タイプB 試験体の機能を 25歳後の機能を タイプB 試験体の機能を 9.4 ク化 第10 9.4 ク化 第10 9.4 クロ 第10 7.4 月の倍 0.50 7.4 日の倍 0.50 第10 試験体の機能 1.50 1.50 ジ腺体の機能 1.50 1.50 ジ腺体のの機能 1.50 1.50 日の倍 1.50 1.50 日の倍 1.50 1.50 日の倍 1.50 1.50

10.2.011	添佳摩擦面にアルミ活射を施した高力ポルト摩擦接合部のポルト配置とすべり係数に関する研究					
老者・所属	東 清三郎(新日鉄住金),那	井 発(古川工庫)				
用薪款。公開年	關構造論文集第24巻第934	,2017年3月				
258187512						
	記録的な物理な	0.008	and the second se	20時後の後期2	5.24K	
試験体区分	3.	(7B	就關係認分	タイプ目		
\$2.52	57	0490	85 M	SM490		
14.01合规的第三人称单数	0	0.81	マベリ/後休駅力市市	0.78		
and the second second	母板	7921	母相	29XF		
WHERE B	课新版	アルに高射	# # # 25 X 24		アルミ湾射	
n and a state of the	最大協	0.80		母相 連結板 最大協	0.72	
すべり係数	平均值	0.79	ずべり係数	平均值	0.71	
	一級小師	0.79		展小師	0.69	
	試験体の機能3			試験体の複型る	100	
胡繁纬医分	9-	(7B	10.000年区:①	\$17B		
10.14	52	/490	10.10	\$1	4490	
		0.8	第一日,除出那些肥力出来	0	.89	
F-SUMBERALL				10.40	7931	
F-SUMBARANA	08.	7921		19.00.		
1<0.00000000000000000000000000000000000		プラスト アルミ選利	原始正式理	建筑有	アルミ治射	
F×0/WHRALLJ 原题指标键	但板 浦防板 最大语	プラスト アルミ選射 0.76	1 1 1 1	1000 連結石 最大倍	アルミ語射 0.99	
F<1/第2885世 単単単55世 T<1/5数	但我 浦站板 最大雄 平均雄	プラスト アルミ選邦 0.76 0.76	摩擦面処理 すべり係数	1000 連結長 最大語 平均値	アルミ語射 0.99 0.92	

論文題目	添接摩擦面にアルミ溶射を	施した高力ポルト摩擦接合	形のボルト配置とすべり係数に	関する研究		
著者・所属	東 清三郎(新日鉄住金),熊井 隆(古川工業)					
用載誌,公開年	編構造論文集第24巻第93号	,2017年3月				
109-18-19-19						
	試験部の機能5	222.22	Delliner III	試驗体的機關		
試験保護分	3.	(7B	試験律協分			
144.68	53	4490	8218			
学生专用的复数形式	(1.87	· #155/WINR51LF			
	背板	7933	AT 10 10 10 10	母性		
in married	通私保	アルミ溶射	岸接至均增	建枯枝		
	最大道	0.89	- TELEVISION	最大領		
すべり係数	平均值	0.87	オペリ係数	平均值		
	展小雄	0.85	10000000000000000000000000000000000000	最小值		
	試験体の種類			試験体の産業		
試驗体区分			試験体区分			
綱種			調種			
すべり/雄伏耐力比点			すべり/陰伝動力比多			
No. of Concession, Name	自然		THE OWNER AND ADDRESS	母板		
Namod	建结核		##350.0	道站板		
	算大師			最大值		
マベリ係数	平约值		二字代化係数に	平均值		
	展小橋			最小值		
備考		li:		la de la companya de		

論文證目	連結板接合面にアルミ溶射	すを施した高力ボルト摩擦接合	継手のすべり係数およびリラ	クセーション特性に関す	る実験的研究		
著者・所属	東 清三郎(新日鉄住金),高	東 清三部(新日鉄住金),高木優任(新日鉄住金),山口隆司(大阪市立大学)					
掲載誌,公開年	網構造論文集第24巻第969	号,2017年12月					
試驗体形状		500 551 (6.4.007.68 0 100 100 0 8.0.00 000 000 000 000 000 000					
	試験体の種類1			試験体の種類2			
試験体区分	タイプB		試験体区分	2	イブB		
调值	SA	A490Y	润植	SM490Y			
オペリ/降伏耐力比査		0.34	すべり/陽伏耐力比算	0.34			
***************	母板	プラスト	的故而终于	母板	無機ジンク		
HE SICULUS AS ALL	運結板	アルミ溶射	ARE DRIVED ACTOR		アルミ溶射		
	最大值	0.94		セーション特性に関す ()))) ()))) ())) ())) ())) ())) ())) ())) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ()))) ())))) ()))) ()))) ()))) ()))) ()))))) ()))) ())))))))	0.81		
すべり係数	平均值	0.93	すべり係数	平均值	0.81		
	最小值	0.91		最小值	0.80		
	試験体の種類3			試験体の種類4			
試験体区分	9	イブB	試験体区分	9	イプB		
領極	SM	A490Y	编楼	S	M490Y		
すべり/職伏師力比点		0.34	すべり/陽保健力は月		0.34		
of calculation and the	母板	ディスクサンダー	NO REPORT AND ADD THE	母板	ディスクサンダー		
CONTRACTOR AND	1014.10	アルミ溶射	THE FOR DUDIES FOR	連結板	アルミ溶射		
AP TRUE ALTER	ATTA AV				0.75		
29-18-30-X-2-3	最大值	0.76			0.75		
すべり係数		0.76	〒 ~1.916数		0.75		

東 清三郎(新日鉄住金)為			- C	Production (1981) 715	
The second for a second second	東 清三郎(新日歌住金),高木優任(新日歌住金),山口隆司(大阪市立大学)				
編構造協文集第24巻第96号,2017年12月					
試験体の機能ら			試験体の機能を		
94	(78	試驗体部分	タイプB		
SM	1490Y	12.15	SM490Y		
0	34	(す→CV/発売組た出非)	0.34		
作板	プラスト	帮佣王站理	0.6	無機ジンク	
建枯枝	アルミ溶射		建結板	アルミ溶射	
最大值	0.85	production	與大條	0.78	
平均值	0.85	すべり係数	平均值	0.72	
化小组	0.84		展小師	0.70	
試験体の種類7			試験体の擾動者		
\$17B		試験体部分	タイプ目		
SM	490Y	91.95	SV	14901	
0	1.34	マベリ/弾伏数た此#	(3.54	
06	無機ジンク		母板	無機ジンク	
建防放	7ルミ治射	A 29 A 10 B	建結板	アルミ消射	
最大语	0.75	イベリ6者	最大组	0.77	
平均領	0.73		平均領	0.76	
最小级	0.72		戴小链	0.76	
			単一単単単単単単単単単単単単単単単単単単単単単単単単単単単単単単単単単単単	単一・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

論文種目	東利処理を施した高力ボルト摩擦接合の摩擦馬に関する基礎的研究				
複有・所属	加村開志(日本工業大学),ま	後 時(日本工業大学)			
州载封、公開年	編構近協文集第1巻,1993年7月				
pogene 7014					
	試験(4-5種類)			記録体の種類2	
区赋件运分	9.	(7A	以粉体以小	タイプム	
67.65	5	5400	16 M	\$\$400	
1-4.9.700代用C力化出	0	.96	111/10/08/08/2017	0.96	
	東田	グラインダ	学研究状态	表云	A.R.H.M.M.
14 H 33 5 H	8.8	99128		8.0	其皮的肥料
	最大组	0.59		最大语	0.59
すべり係数	平均相	0.58	すべり係数	平均值	0.56
	最小值	0.58		植小体	0.52
	試験体の種類3			308時の推測4	1.1
試験体区分	21	r Z A	試験体区分	317A	
供植	\$	5400	#112	S\$400	
1-4月7期资料方法准	0	.96	中州市2000年1月1日月).96
-	長田 二	新常期促进相	an opposite of the	美田	新用的公共利
- Without State	8.0	新常期促进相	W # # 30.50 W	All .	朝光朝空流相
	最大條	0.58	中心日本教	最大值	0.60
すべり係数	平均值	0.57		平均镇	0.58
	一級小條	0.57		観会様	0.57
ずべり係数 備考	最大信 平均信 最小信	0.58 0.57 0.57	中国的	最大值 平均语 最小值	

論文題目	薬剤処理を施した高力ポルト摩擦接合の摩擦面に関する基礎的研究				
著者・新蔵	加村隆志(日本工業大学),北後 寿(日本工業大学)				
掲載誌, 公開年	編構造論文集第1巻,1993年7月				
試験体形状					
	試験休の種類5			試験体の種類6	
試験体区分	タイプム		試験体区分	タイプB	
洞槛	3	\$400	鋼櫃	S3400	
すべり/降伏耐力比量	(0.96	すべり/時伏耐力比点	0.96	
of all set as an	表面	纳充纳化准利	摩擦面処理	母板	グラインダー
APR 886 00 50-12	実出	制杂助促进刻		連結板	グリッドG50+70
	最大值	0.59		最大值	0.57
すべり係数	平均值	0.59	すべり係数	平均值	0.56
	最小值	0.58		最小值	0.55
	試験体の種類7			試験体の種類8	
試験体区分	ダイブB		試験体区分	タイプB	
銀橋	S	S400	鋼種	S\$400	
〒ペリ/筒伏耐力比良	(0.96	すべり/時伏耐力比β		0.96
ola internet her tam	母板	苯皮利酸剂	岸报面处理	母板	就是朝促滥刑
14 19 DUXYE	連枯板	グリッドG50+70		連結板	9 9 7 FG50+70
	最大值	0.55	すべり係数	最大值	0.57
すべり係数	平均值	0.51		平均值	0.56
	最小值	0.45		最小值	0.55
備考	最小值	0.45		最小値	0.1

論文題目	薬剤処理を施した高力ボルト摩擦接合の摩擦面に関する基礎的研究				
著者・所属	加村隆志(日本工業大学),北後 寿(日本工業大学)				
掲載誌,公開年	鋼構造論文集第1巻,1993年7月				
試験体形状					
試験体の種類9			試験体の種類10		
試験体区分	タイプB		試験体区分	9	イブB
鋼種	\$\$400		简任	\$3400	
すべり/降伏船力比点	0.	.96	すべり/陽伏能力比多	0.96	
AN OR OTHER ADDRESS	母板	論死論促進制	摩擦面処理	母板	グラインダー
/+ IN BUCKDAR	連結板	缺杂纳促进剂		連結板	グリッドG50+70
1.00m	最大值	0.56		最大值	0.56
すべり係数	平均值	0.55	すべり係数	平均值	0.50
	最小值	0.54		最小值	0.45
	試験体の種類			試験体の種類	
試験体区分			試験体区分		
網種			鋼種		
すべり/陰伏耐力比点			すべり/職代配力比量		
NA ADDRESS ANY THE	表面		·····································	表面	
105 102 101 201 100			sep mit all scoke.	take men	
摩擦面切理	裏面		10240 Nor (1007)	黑血	
摩擦面奶理	裏面 最大値			裏面 最大値	
岸線面処理 すべり係数	裏面 最大値 平均値		すべり係数	美四 极大值 平均值	-

論文類目	摩擦接会接触面のプライマー聯去方法の検討					
著者 • 所属	松村正義(トピー工業),北	島 遺(トピー工業)、西国広2()	トピー工業)、三ツ木幸子(トピー	-工業)		
周載誌、公開年	編構造論文集第2巻,1994年11月					
MARINER						
1.01.000.000.000	10880億間1		275234857 - 3V2	108/8-048/82		
試験体区分	9178		10期伸展分	3	イプB	
55 M	5	M490Y	61	SM490Y		
11日中国教育会社(第二		0.5	#~49/MORENIL#	0.5		
	母板	ネッチングプライヤー	原居王松理	相相	スッチングプライマー	
ALC: NO.	遗私依	エッチングプライマー		建筑板	スッチングプライマー	
and the second second	前大街	0.25		很大骇	0.32	
すべり係数	平均值	0.25	すべり係数	平均值	0.32	
	線小師	0.25	a and the second	服小语	0.32	
	試験体の機能3	- 11		2018年8月1日1日1日1日		
规制体统分	9178		民間体区分	タイプB		
101 M	5	MA90Y	10.0	SM490Y		
年六9.0時代統內注意		0.5	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0.5		
11 and 10 and 10 and 10	.06	キャチングプライマー	RRENT	46	エッチングプライマー	
and the second second	and the second se	11 m m h 17 m 7 h		建枯板	ショットプラスト	
原用出达理	通秘板	28777777				
原用面后用	連結板 載大値	0.33		最大值	0.39	
原用出活理 すべり休政	通知板 載大値 平均値	0.33	すべり係数	最大值 平均值	0.39	
論文題目	摩擦接合接触面のプライ	マー除去方法の検討				
--	---------------------	--------------------------	--------------------	--	------------	
著者・新属	松村正義(トピー工業),北	島 道(トピー工業),西園広之(トピー工業),三ツ木幸子(トピー	·工業)		
揭戴鼓、公開年	網構造論文集第2卷,1994	年11月				
試験体形状						
	試験体の種類5			試験体の種類6		
試験体区分	3	イブB	試験体区分	タイプ8		
简称	S	M490Y	润殖	SM490Y		
すべり/陽伏耐力比書		0.5	すべり/開伏耐力比点	0.5		
standar and Annual	母板	ショットプラスト	摩擦面処理	母板	グリッドプラスト	
HE THERE NO VE	達枯板	ショットプラスト		達結板	ショットプラスト	
	最大值	0.39		最大值	0.46	
すべり係数	平均值	0.38	すべり係数	平均值	0.45	
	最小值	0.38		最小值	0.44	
	試験体の種類7			試験体の種類8		
試験体区分	3	イプB	試験体区分	タイプB		
銅種	S	M490Y	個種	S	M490Y	
すべり/時伏耐力比点		0.5	すべり/時伏配力比点		0.5	
974071000000000000	母板	グリッドプラスト	AN 449 202 4-5 100	母板	グラインダで1回除去	
NAMES OF A DESCRIPTION OF A DESCRIPTIONO			摩擦面她理	and the second		
摩擦面站理	速粘板	ショットプラスト	2011/2012/2017	連結板	ショットプラスト	
摩擦面站理	道結板 最大値	ショットプラスト 0.59		通結板 最大値	0.36	
摩擦面処理 すべり係数	· 連結板 最大値 平均値	ショットプラスト 0.59 0.57	すべり係数	通結板 最大值 平均值	0.36	

The second se	原始総合接触系のプライ	マー除ま方法の検討			
10,X,3211	単葉接合技/法国のアアノ1	*一株式/3点の(Ka)	U TR) = web = 7/1 U	7.82)	
者省・所属	れ行止親(トヒー工業),北 (明明):10:55(1):50(1):	局 坦(トヒー工業),四国仏心()	トビー工業/,ニッ水学子(トビー	・上乗)	
掲載記,公開年	期構造論又集第2巻,1994	年11月			
試驗体形状					
	試験体の種類9			試験体の種類10	
試験体区分	3	イプB	試験体区分	3	イブB
調種	8	M490Y	润楂	SM490Y	
すべり/陸伏耐力比良		0.5	すべり/陰伏配力比多	0.5	
strate and a little and some	母板	グラインダで1回除去	摩擦面奶埋 -	母板	グラインダで3回除り
深照面処理	津枯板	ショットプラスト		連結板	ショットプラスト
	最大值	0.43		最大值	0.36
すべり係数	平均值	0.40	すべり係数	平均值	0.34
	最小值	0.38		嚴小镇	0.34
	試験体の種類11			試験体の種類12	- d.
試験体区分	3	イプB	試験体区分	タイプB	
编程	S	M490Y	劉程	S	M490Y
すべり/時伏証力比)		0.5	すべり/強化配力比声		0.5
NAMES OF A DR	母板	グラインダで完全除去	THE PART OF A CALL AND A	母板	グラインダで完全路
THE PROJECT OF	連結板	ショットプラスト	the big orthorate	連結板	ショットプラス
	最大值	0.35		最大值	0.54
	100 100 100	0.34	すべり係数	半均值	0.54
すべり係数	7-1910	91.074			

論文題目	摩擦接合接触面のプライマー除去方法の検討				
著者・所属	松村正義(トピー工庫),北	島 遺(トピー工業),西風広之(トピー工庫),三ツ木幸子(トピー	工庫)	
用載法,公開年	編構造論文集第2巻,1994	年11月			
試験体形状					
	試験体の種類13			試験体の種類14	
試験体区分	\$	イプ8	試験体区分	タイプB	
润植	S	M490Y	調種	SM490Y	
すべり/詩伏耐力比重		0.5	すべり/請伏配力比点	0.5	
ala tale III dal 100	母板	グラインダで完全除去	摩擦面処理 -	母板	グラインダで我想的除去
序频量处理	連結板	グラインダで完全除去		連結板	ショットプラスト
	最大值	0.29		最大值	0.33
すべり係数	平均值	0.29	すべり係数	平均值	0.32
	最小值	0.28		最小值	0.32
	試験体の種類15			試験体の種類16	- d.
試験体区分	3	イプB	試験体区分	タイプB	
間径	S	M490Y	鋼種	S	M490Y
すべり/降伏耐力比赛		0.5	すべり/陽伏配力は月		0.5
NA REPORT OF LAR	母板	グラインダで局部的総会	101102-00.00.00	母板	グラインダで局部的除去
摩擦面処理	連結板	ショットプラスト	AT THE OLD STATE.	連結板	ショットプラスト
		0.70		最大值	0.59
	最大值	0.33	すべり活動		
すべり係数	- 最大值 平均值	0.37	すべり活動	平均條	0.55

請文緒目	摩擦接合装触菌のプライ	マー除去方法の検討			
著者 - 所謂	松村正義(トピー工業),北	為 油(トピー工業),西南広之(トピー工業),三ツ木寺子(トピー	-工業)	
消耗过,公供年	副桃古波文集第2件,1994	年11月			
10050					
the state state of	10年1月1日の根末17	0.000		203818-0種類18	873387A
间腺病医疗	4	178	試験仰区会	1	オブ目
1010	5	M4901	11.0	SM490Y	
マベリ/除休能力は非		0.5	11-11-11日秋秋九出市	0.5	
	母族	ダラインダモ総要約除去	No. of Concession, Name	- 6 6	デナインデマ医療計算法
WHERE BE	建枯枝	ショットプラスト	18 19 11 10 18	建枯枝	ショットプラスト
2010/07/07/07	服大協	0.35		最大值	0.64
すべり係数	平均值	0.34	すべり係数	平均值	0.61
	親小師	0.32	1912000	8-1-6	0.58
	試験体の種類19			20時時の種類20	1.02.9
試験体活分	4	178	試験排区分	5	17B
単性	8	M490Y	81.91	1	M490Y
年六年/時代前方計測		0.5	1111月1日休息办出来		0.5
an instance in		7342910888888	and an other states of	0.6.	FebauF-188
1410101010	建粘板	ショットプラスト	WHERE A	建结核	ショットプラスト
	最大語	0.75		最大值	0.41
すべり係数	平均值	0.64	すべり係数	平均值	0.40
	載小儀	0.58	- XYDEW/8965	截小師	0.39
6.4	KAR4417,2013.00 MIRANA	P発音後に記録、記録9938,1942	孝勝副処理後2ヶ月後に記載		

	試験体の種類1			試験体の種類2	
試験体区分	91	7B	試験体区分	\$1	7B
解核	SM	1400	編編	SM	1400
オペリ/陽伏超力比算	0.1	867	すべり/編択耐力比点	0.:	363
101 102 103 4.4 208	母板	無機ジンク	and tablets on the	母板	加機ジンク
744 109 UND 742 438	連結板・フィラー	HD255→リン酸塩	NF INSUINCE	連結板・フィラー	HD255→リン酸料
	最大值	0.58		最大值	0.59
すべり係数	平均值	0.49	オペリ係数	平均值	0.52
	最小值	0.45		最小值	0.56
	試験体の種類3		試験体の種類4		
試験体区分	91	7 ₿	試験体区分	タイプB	
銅種	SM	490Y	餌種	SM400	
すべり/時代動力比点	0.5	321	すべり/時代耐力比点	0.4	475
10/ \$22/10/ 21.100	母板	無機ジンク	100 ber 355 det 100	母板	無機ジンク
Ne tre un xuxie	連結板・フィラー	HDZ55→リン酸塩	PP-TECHE AD-LE	達結板・フィラー	HDZ55→リン酸却
	最大值	0.59		最大值	0.55
すべり係数	平均值	0.54	すべり係数	平均值	0.54
	最小值	0.50		最小值	0.52

論文題目	フィラーを有する高力ボルトー面摩擦接合鍵手の	のすべり耐力
著者・所属	神田恭太郎(川鉄橋梁鉄構)。上村明弘(川鉄橋梁鈸	(構)、森猛(法政大学)
興載誌, 公開年	鋼構造年次論文報告書第14巻,2006年11月	
試験体影状		····

論文題目	摩擦接合接触面のプライマー除去方法の検討				
著者 · 所属	松村正義(トピー工業),北)	島 道(トピー工業),西国広之(トピー工業),三ツ木幸子(トピー	(工業)	
调载誌、公開年	氟構造論文集第2卷,19943	単11 月			
試験体形状					
	試験体の種類21			試験体の種類22	
試験体区分	\$	イプB	試験体区分	3	マイプB
鋼種	SI	V1490Y	調練	SM490Y	
すべり/時伏耐力比8		0.5	すべり/時伏耐力比声		0.5
摩擦面処理	母板	ハンプイジョウターで物表	厚擦面処理	母板	ダラインダで局部的敵击
	連結板	ショットプラスト		連結板	グラインダで局部的除去
	最大值	0.70		最大值	0.24
すべり係数	平均值	0.68	すべり係数	平均值	0.23
	最小值	0.66		最小值	0.23
	試験体の種類			試験体の種類	
新期体区分			試験体区分		
與權			前後		
4-11/10/00/11:02			11日の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本		
NOV 1007 2007 A-0, 1000	母板		W107072040.00	母板	
神影而为此	連結板		洋橋面知道	運結板	
	最大值			最大值	
すべり係数	平均值		すべり係数	平均值	
	最小值			最小缝	
64	10款9817,20以來推进45世	使直接に3000、30001818,1962	摩擦系処理後2か月後に試験		

論文題目	亜鉛めっきHTB及び接合面	を暴露後に組立てた継手のす	べり耐力		
著者·所属	新一(JFEエンジニアリング)	,高須賀丈広(JFEエンジニア	リング),上村明弘(JFEエンジ	ニアリング)	
掲載誌。公開年	網構造年次論文報告書第19	巻,2011年11月			
試驗体形状					
	試験体の種類1			試験体の種類2	
試験体区分	21	7B	試験体区分	\$17B	
简推	SM	1400	润積	SM400	
すべり/菌伏耐力比良	0.1	734	すべり/結伏能力比点	0.	807
wine main cases are summ	母板	無機ジンク	who believe that have not	母板	無機ジンク
26-39-00.057E	速結板・フィラー	HDZ55→リン酸塩	NAL FOR DELIVERY IN	連結板・フィラー	HDZ55→リン酸塩
	最大值	0.55		最大值	0.59
すべり低数	平均值	0.51	すべり係数	平均值	0.57
	最小值	0.49		最小值	0.54
	試験体の種類3			試験体の種類4	Č:
試験体区分	\$1	7B	試験体区分		
20140	SM	400	93150		

编程	SM400 0.781		鋼種		
すべり/降伏鮮力出身			すべり/強伏能力比声		
摩擦面処理	母板	無機ジンク	where we have been a state	母板	
	連結板・フィラー	HDZ55→リン酸塩	the life out works	連結板・フィラー	
	最大值	0.57		最大值	
すべり係数	半均值	0.55	すべり係数	半均值	
	最小值	0.53		最小值	

儀式

試験体2は母板に無機ジンクを塗布後、約6か月暴露 試験体3は母板に無機ジンクを塗布後、約9か月暴露

論文器目	遺施孔を有する高力ボル	ト摩擦除含糠手のすべり動力実	ti i		
星客・所属	山本浮史(大阪市立大学)、中川陽太(大阪市立大学)、山口隆司(大阪市立大学)、桑山豊六(会地エンジニアリング)、山内寺政(東京駅骨橋家)、寺田				
用載訊、公開年	編構造論文集第24巻,201	6年11月			
1000 Bit					
11.11.11.11.11.11.11.11.11.11.11.11.11.	Kikis 0 11 11	NAMES OF STREET, STREE	CARACTER AV	試験体の機構2	0.000 C
其联络区分	3	イブム	104030239	1	トイプル
68	1	SM570	能推		SM570
化-19/00分配为达成		0.443	中不分/用的状态比测	0.433	
An and the local data	作品	金属油料(ALMg企业)	常推进的增	商用	金属市利OU.Mg合金
*****	8.5	無機ジング		表白	無機ジンク
2	最大级	0.60	CONTRACTOR OF T	最大後	0.57
すべり係数	平均值	0.58	中心呈新数	平均值	0.57
	新小桥	0.55		展小儀	0.56
	20時11の模型3			試験体の極関4	
胡糖伴医分	1	117A	試験体区分	9	117A
114	1	SM570	16.12		SM570
オペリ/時日時た316月		0.438	中心(5/08/08/2018.0		0.221
and the second second second	(四)	金属混制(ALMg合金)	ale an all in the	表出	金属温泉(ALMg企业
Whatson.	8.0	無機ジンク	- 99904250/W	8.0	無機ジンク
	超大雄	0.59	5	最大領	0.32
すべり係取	平均储	0.57	すべり係数	平均值	0.30
	据小组	0.55		藏小儀	0.29
44	2008/8 1 ~ 3 U 5 002000 2008/8 1 U 30.57.M L .	(1次5190),3008984は31963008(7 200898-2 は363075,(36,4,7540),30	男すべり) 2004年3日追加孔(平行追加),20	朝後4は追加孔祭し	

請文題目	追加孔を有する高力ボルト摩擦接合職手のすべり耐力実験					
著者・所属	山本淳史(大阪市立大学),	中川用太(大阪市立大宇),山口開	间(大贩市立大学)、桑山豊六(学	(地エンジニアリング)パ	い内卒政(東京鉄骨橋梁),寺	
掲載誌,公開年	歸擠造論文集第24巻,2016年11月					
MARK						
	記録体の機関5	24460 C	a and the second second	試験体の機能を	0.04040	
10.00件运会	9	17A	1081833.9	3	17A	
開發	3	5M570	21/2		SM570	
1~10/福祥敏力运送		0.209	11-11-2月秋期为法法	0.206		
保持高的度	表出	金属高粉(ALMg合金)	皇帝武松理	表出	金属油料(ALMg合金)	
	素质	無機ジンク		其 前	無機ジンク	
	最大值	0.30		最大语	0.29	
すべり係数	平均值	0.29	すべり係数	平均值	0.28	
	華小信	0.27		除小语	0.21	
	35酸体の機能7		(取動性の機能を	22	
化制体区分		47A	就粮休证分:	817A		
R111	1	IM570	1112		SM570	
1-10/用於創力注意		0.436	第一110/300000111.0		0.421	
Concernance in	美国	金属温粉(ALMg合金)	10 10 10 10 10 10	8.5	#REH(A.Mydril)	
With Dates of the	東京	無機ジンク	1418-0230-02	英臣	無機ジンク	
	最大值	0.62		最大領	0.57	
すべり係数	平均值	0.58	すべり係数	平均值	0.55	
	截小街	0.54	a conserve a	副小小師	0.53	
-	JCB/H5,6は引きJCB(内)	r ~ 9).)CR (#7,8は万麗)CR(1 40)、 DCR(#6は近かう(平行方が	文圧編) 6).80時年7日1日の元集て.300時	48以直知孔(唐舟方向)		

請文題目	追加孔を有する高力ポルト摩擦接合継手のすべり耐力実験						
宿舎・所属	山本淳史(大阪市立大学),	山本淳史(大阪市立大学)、中川間太(大阪市立大学)、山口隆司(大阪市立大学)、桑山豊六(宮地エンジニアリング)、山内幸政(東京鉄骨機業)、寺田					
掲載誌,公開车	編構造論文集第24巻,201/	5年11月					
Mark II.							
SCO MARK	試験体の機構等	1.400	and the second state	30時(第47)後期10	1994		
試験体区分	9	17A	\$C\$64832(分)	3	17A		
新聞	1	SM570	518	3	SM570		
★→10/目前数方法正		0.381	· # // 11/10/08/加加速	0.272			
10 10 10 11 10	一 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	业规制(ALMg击虫)	700 H 40 10	(の)の()	生成某种(ALMg由生)		
astra	英质	無機ジンク	10.000	英用	無機ジンク		
	着大信	0.51		继大组	0.39		
すべり係数	平均值	0.50	イベジ県教	平均值	0.38		
	最小绩	0.48	a normana b	最小線	0.36		
	10种体内模糊11			15期後の接頭12	1. N.		
机制件区分	9	47A	100014-05.55	3	117A		
aine .	1	SM570	新维		SM570		
至-10/国际能力起源		0.25	-#:===U/\$#0687538.#		0.265		
Contraction of C	A 20	世國第十(ALMg由台)	and the second second	泉田	BIKEN(ALMph-B)		
A later of a	8.0	無機ジンク	window .	英加	無機ジンク		
		0.35		最大语	0.40		
すべり供数	平均值	0.35	下六り休赦	平均值	0.36		
	据小语	0.34		個小値	0.34		
84	1000-00-0112-0112-010-012-01-02-01-02-01-02-01-02-01-02-01-02-01-02-01-02-01-02-01-02-01-02-01-02-01-02-01-02-0 1000-00-9-02-02-02-02-02-02-02-02-02-02-02-02-02-	10), pCRAME 10, 11, 12 (2) JE NO CRA R(), pCRAME 10(2) 2010 (7, MI), pC	(再すべり) 原用11は追加孔(波角),以解用1	733歲后孔(平行方向)			

論文理目	高力ボルト摩擦接合部発鏡	高力ボルト摩擦接合部発鏡処理面に及ぼす諸変数の影響							
著者・所属	石川茶理(大贩大学大学院	石川祐理(大贩大学大学院),桑原道,朱欧淳平							
掲載話,公開年	日本建築学会近畿支部研究	日本建築学会近畿文部研究報告集。2013							
試験体形状			 ● 注● ● 注●						
	試験体の種類1			試験体の種類2					
试験体区分		10 m	試験体区分		-				
劉桓	SM	4490	鋼種	SM490					
すべり/時状耐力比β	0	.31	ボベリ/時状射力に 8		0.68				
岸拍通処理	母板	グラインダ	wire beite TATE dame, some	母板	自然発銷				
	速結板	グラインダ	PER DI ALCO AL	造砧板	自然発銷				
55 CARDON	最大值	不明	すべり係数	最大值	不明				
すべり係数	平均值	0.25		平均值	0.55				
	最小值	不明	1	最小值	不明				
	試験体の機関3		試験体の種類4						
试验体区分			试験体区分						
銅櫃			調種						
すべり/隆伏耐力計合			すべり/時休鮮力比方						
Her fair 200 (c) 100	母板		at the 22-10 10	母板					
洋徑直沿建	連結板		序型道程度	連結板					
	最大值			最大值					
すべり係数	平均值		すべり係数	平均值					
	最小值			最小值					
<u>9</u> 4				C . 10. 10	c*:影戲				

論文題目	表現処理・時付け施工法を支数とした高力ボルト摩擦接合部のすべり実験(その1 実験框要と時付け施工法による影響)							
若者・所属	(河合翔大部 (大阪大学大学院), 壁高裕治,桑原直,山口隆弓,平井敬二,亀井義勇							
掲載誌,公開年	学術講演使概集C-1, 2010	0						
試験体形状		5M(00	Image: A state of the state of th	- 1				
	試験体の種類1			試験体の種類2				
試験体区分	9	17A	試験体区分	\$1	ブム			
\$44t	3	M490	彩板	SM	1490			
すべり/時代射力18月		0.49	すべり/時伏耐力比β	0.49				
ala biz 30 co 10	表面	ショットプラスト+自然錆	ala teta 20 per colo	表面	グラインダ+自然錆			
74-191 (III.965) (II	裏面	ショットプラスト	14 19 20 X5 18	東面	ショットプラスト			
	最大值	不明		最大值	不明			
すべり係数	平均值	0.65	すべり係数	平均值	0.45			
	最小值	不明		最小值	不明			
	試験体の種類3	10	試験体の機能 4					
试験件区分	. 9	17A	北原体区分					
214	S	M490	算機					
学习(例状能力)注意		0.49	· #→1/10(用力出身					
·	表 班	ショットプラスト+車品網	an an an an an	母族				
APRILIS OF	美力	ショットプラスト	A# 38 18 10.08	運動報				
	最大信	不明		最大領				
すべり係数	平均维	0.69	すべり係数	平均健				
	最小値	不明		最小铸				
5 A				5A.58:ショットプラス トの送り速度が異なる GRグラインダ仕上げ 〇1:約1+升屋外放置。				

論文題目	表面処理・時付け施工法を変数とした高力ボルト摩擦接合部のすべり実験(その2 表面処理による影響)						
著者・形実	桑原遺 (大阪大学大学校), 黄高裕治。河合相太郎、山口隆弓、平井敬二、亀井義勇						
掲載誌、公開年	学術講演便概集C-1, 2010						
DERIO II (C	「表面処理・線付け施工法を変数 (その1 実験概要と線付け施工3	とした高力ポルト摩擦接合部のすべり実験 &による影響) 」と同一試験のため、省略す	ō.				
	3056年の極新1		試験体の機制2				
試験体区分		加制体区 价					
68	-	519					
1-10/用状的方法是		11-11-11-11-11-11-11-11-11-11-11-11-11-	1				
原用生化用	将张		自核				
	建机板	AF HE DE NO IS	通結核				
	最大值	- ANTANALA	继大组				
すべり係数	平均值	オペル語数	平均值				
	展小線	a and and a	最小值				
	25.00位100位103		試験体の機能4				
赵献体区分		DCM(#0)(分)					
#191		前推					
(一)、(種株能力的)		一年一〇八個日間2月1日月					
-	66	ALC: 10 (1) (1) (1) (1)	一種板				
- Networkships	液机板	14 14 cl 1 1 1	建枯枝				
	最大值		最大道				
平当り休息	平均值	4 ~ 4 任 服	平均值				
	服小组		相小雄				
84							

論文題目	硬きが異なる鋼材間の摩擦	硬きが異なる瞬射間の摩擦係数に関する基礎的研究							
著者・所属	宇野梅方 (新日本製織劇構	(遺研究開発センター) 、 井山	上一朝,志村保美,脑山広三						
掲載誌,公開年	日本建築学会構造系論文集	l, 1997							
試験体形状									
	試験体の極類1			試験体の種類2					
試験体区分	9	イプA	試験体区分						
82.M	3340	99,935C	解植						
Y-10/MORPHILE	0.80		平台の消費が取ります						
ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNE OWNE OWNER OWNE OWNER OWNE OWNE OWNE OWNE OWNER OWNE OWNE OWNER OWNE OWNE OWNE OWNER OWNE OWNE OWNE OWNE OWNER OWNE OWNE OWNE OWNE OWNER OWNE OWNE OWNE OWNER OWNER OWNE OWNE OWNE OWNER OWNE OWNE OWNE OWNE OWNE OWNE OWNE OWNE	清洁:	プラスト処理	and set that and	05					
at the state of the	其当	波形 (完起)	#########	诸结核					
and the second second	最大组	1.12		最大道					
すべり係数	平内線	1.04	すべり係数	平均值					
	最小级	0.94	a second a	展小師					
	試験体の機構3		試験体の複雑す						
試驗体区分			試驗体区分						
肩種			羂種						
すべり/個状耐力比多			すべり/預伏耐力比点						
ALC: NO.	0.6		OWNER.	母弦					
Williams a	诸枯枝		19 10 10 10 10	课档板					
	最大值		1	最大级					
すべり係数	平均領		下水り係数	平均值					
	展小橋			三小信					
9.4	4/r 1/2/r 1								

若者・所謂 掲載誌,公開

論文籍目	異種接合面処理における摩擦接合離手のすべり耐力試験						
若者·所属	月波寛夫(阪神高速道路管技術センター)、追田治行(阪神高速道路管技術センター)、杉山花樹(阪神高速道路)。開上直浩(阪神高速 道路)、山口隆司(大阪市立大学大学院)、木村聡(大阪市立大学大学院)						
【載誌、公開年	日本道路会議論文集(CD-ROM), 第29卷, 2011						
試験体形状							

	試験体の種類1		試験体の種類2			
試験体区分	9	イプB	就服体区分	タイプB		
鋼桶	5	S400	個種	SS400		
1ペリ/孫伏蛇方北岸		0.65	すべり/孫伏昭力は月		0.65	
WY 607 222 1/2 102	母权	グリッドプラスト	We say the art with	母板	有機ジンク (2種ケレン)	
A DENGE	連結板	加機ジンク (1種ケレン)	W IN IN VICE	連結板	無機ジンク (1種ケレン)	
	最大值	0.54		最大值	0.38	
すべり係数	平均值	0.51	すべり係数	平均值	0.37	
	最小值	0.45		最小值	0.35	
	試験体の種類3	- Mi		試験体の種類4		
試驗体区分	9	17B	試驗体区分	タイプB		
鋼廠	1	S400	制度	SS400		
1ペリ/編伏戦力社員		0.65	すべり/陣伏町力比点		0.65	
	母板	1種ケレン		母板	プリストルプラスト	
摩擦面奶理	達結板	無機ジンク (1種ケレン)	摩擦面切理	連結板	無機ジンク (1種ケレン)	
	是大值	0.69		最大值	0.59	
すべり係数	平均值	0.68	すべり係数	平均值	0.57	
	最小值	0.66		最小值	0.54	

備市

・プリストルプラスターによる2種ケレンにより、0.4以上のすべり係数を確保できると報告している。

РИДАНИЯ	18 14	紙編付きの数編は、紙 すること	狐の中の値を参照
10 100000 10 100000 10 100000 10 100000 10 100000 10 100000 10 100000 10 100000 10 100000 10 100000 100000 100000 100000 100000	18 18	紙償付きの数値は、紙 すること	盛の中の値を参照
/模糊1		試験体の機能で	- 25
\$17B	試験体区分	217B	
SM490	89	5M490	
0.79	学习节/用的数约结束	0.79	
1日日本市内市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	0.000	95	429
1回 第回日記メッキに グリッドプラスト	14 M 14 A 14 M	18.07.61	道験変数メッキに グリッドプラス)
18 0.50		最大语	0.52
9佰 0.48	すべり係数	平均值	0.49
値 0.46		最小值	0.46
the second	1 年前1	タイプ名 記録体区分 タイプ名 記録体区分 SM690 顕微 0.79 ギャルに周囲のためます。 第二日日 ジールに周囲のためます。 市田 グリッドプラスト 1日 0.50 方田 0.48 1日 0.46	支イブB 試験体の機器2 タイブB 試験体の機器2 SM4900 顕微 0.79 アイリ、消除剤的加加加 型 学生したものであるが、

3. 異種接合面継手の適用性に関する実験的検討

3-1 はじめに

本研究では、2章の異種接合面継手に関する文献調査と施工実績調査の結果を踏まえ、異種接合面継 手の試験体を製作し、すべり耐力確保の観点からその適用性に関する実験的検討を行った.本章では、 まず、対象継手と接触面処理について述べ、ボルト締め後のボルト軸力推移を把握するためのリラクセ ーション試験とすべり係数を評価するためのすべり耐力試験について報告する.そして、先行研究で報 告されている結果も引用して、各異種接合面継手の設計すべり係数について検討する.

3-2 本研究における対象継手と接触面処理

3-2-1 試験体諸元

図 3-1-1 に本研究で使用した試験体の形状と寸法を示す. 試験体の母板と連結板には, それぞれ表 3-1-1 に示す SM490YB と SM490YA を用いた. 高力ボルトには, 表 3-1-2 に示す F10T (呼び径 22mm, 首下長さ 85mm)を用いた. 試験体寸法は, 試験体がすべり先行型となるよう, 標準試験片¹⁾を参照し て決定した. すなわち, すべり係数を 0.40 とした場合のすべり降伏耐力比βの設計値 (以下, β_dと表す) は 0.64 となっている. ボルト孔は標準孔とし, ボルトピッチ P や縁端距離 e も標準試験片に準じるもの とした.

(a) 試験体の側面図

(b) 試験体の上面図

図 3-1-1 試験体の形状と寸法

	板厚	機械的性質			化学成分[%]					
鋼種	[mm]	降伏強度 [N/mm ²]	引張強度 [N/mm ²]	伸び[%]	С	Si	Mn	Р	S	適用部位
SM490YA	12	430	519	23	0.15	0.19	1.1	0.011	0.005	連結板
SM490YB	19	437	530	23	0.15	0.19	1.08	0.023	0.007	母板

表 3-1-1 試験体の材料特性(鋼板)

表 3-1-2 試験体の材料特性(高力ボルト)

シリーズI

				ボルト					ナット	座金	1 11 7
等級 ボルト径 [mm]			4号試験片				製品		製品	製品	係数値
			耐力 [N/mm ²]	引張強度 [N/mm ²]	伸び[%]	絞り[%]	引張荷重 [kN]	硬さ (HRC)	硬さ (HRC)	硬さ (HRC)	(平均値)
F10T	M22	85	999	1054	18	70	328	33	29	39	0.137

シリーズII

			ボルト						ナット	座金	1 1 2
等級	等級 ボルト径 [mm]			4号試験片			製品		製品	製品	トルク 係数値
			耐力 [N/mm ²]	引張強度 [N/mm ²]	伸び[%]	絞り[%]	引張荷重 [kN]	硬さ (HRC)	硬さ (HRC)	硬さ (HRC)	(平均値)
F10T	M22	85	1019	1074	19	69	332	32	25	40	0.131

本研究ではこのような試験体を,検討する接合面構成に応じて 18 種類製作した(表 3-1-3). 接合面 構成は,継手内の各接合面の分類(タイプA,タイプB,または接触面が継手内で統一)と,各板の接 触面の状態や仕様を表す(同表参照). 試験体は接合面構成ごとに 3 体ずつ用意したため,その総数は 54 体である.うち 33 体は 2018 年に製作し試験を実施した.残りの 21 体は 2019 年に製作し試験を実施 した. 2019 年の試験体は試験後の 2018 年の試験体の鋼板を再利用(表面は再処理)して製作し,どち らの年の試験体も同一の工場で製作されたが,グリットブラストで使用された研削材の状態,施工者, 気温,湿度,風況等の違いの影響を考慮して,次節以降では 2018 年の試験と試験体をシリーズ I, 2019 年の試験体をシリーズ II と区別する.

異種接合面継手タイプ A の試験体(試験体 A と呼ぶ)としては,耐候性鋼材を裸仕様で使用した新 設箱桁等のボルト継手について外面を無機ジンク塗布せず製作する場合を想定し,2 種類の接合面構成 を対象とした.いずれもナット側の接触面について箱桁内面を想定した無機ジンク塗布としているが, 試験体 A-b1 ではボルト頭側の接触面を発せい前の箱桁外面(粗面状態)を想定したグリットブラスト に依る接触面仕上げ(以下,ブラスト)とした.これに対して,試験体 A-n1 ではボルト頭側の接触面 を発せい後の箱桁外面を想定し自然さびとしている.以上のように,試験体 A は,道示や鉄標で示され ている表面処理の組み合せとした.

異種接合面継手タイプ B の試験体 (試験体 B と呼ぶ) としては,既設部材への無機ジンクの代わる接触面の現場仕様や,道示・鉄道標準で使用が認められている接触面の組合せとして,6 種類の接合面構成を選定した.連結板はいずれも新設として無機ジンクであるが,母板の仕様はそれぞれ異なる.すなわち,試験体 B-b2 では,無機ジンク塗布を省略したブラストとしている.試験体 B-g では,狭あいな空間での簡易工具に依る方法として,動力工具(ディスクグライダーとダブルアクションサンダーの併用)に依る接触面仕上げ(以下,グラインダー)としている.試験体 B-v では同様に,狭あいな空間での簡易工具に依る方法として,縦回転式動力工具(ブリストルブラスター)に依る接触面仕上げ(以下,縦回転式)としている.試験体 B-o では,ブラストに依る素地調整が不要な塗装仕様として,有機ジンク)塗布とした.試験体 B-n2 では,ブラストの後に発せいした場合として自然さびとしている.試験体 B-a では,数日程度での発せいが可能であり鉄骨建築のボルト継手に採用されている¹¹⁾,さび促進剤に依る赤さび面(以下,薬剤さび)としている.以上のように,試験体 B の母板は,道示や鉄標で示されていなが,現場での作業性が良いと考えられる表面処理を用いた.

また,接触面が継手内で統一された試験体Cも用いた.試験体Cは,上述の仕様それぞれについて異 種接合面継手の試験体と比較するため、9種類の接合面構成(C-b1, C-b2, C-s, C-v, C-i1, C-i2, C-o, C-n1, C-n2, C-a)となっている.なお,接触面の仕様を表す記号の中で,b1,i1,n1は2018年に製 作された試験体における,それぞれブラスト,無機ジンク,自然さびの接触面であるのに対して,b2, i2,n2は2019年に製作された試験体における,それぞれブラスト,無機ジンク,自然さびの接触面で ある.ブラスト同士,無機ジンク同士,自然さび同士で仕様を統一し,可能な限り同条件となるよう製 作を行ったが,製作年が異なる場合には同条件とは見なせない場合もあり得ると考え,末尾に1または 2を付け区別することとした.

継分	手類	試験体名		接合面 (母板側-連結板側)	座金との接触面
	型	۸h	ボルト頭側	ブラスト-同左	ブラスト
	倿触	A-D	ナット側	無機ジンク-同左	無機ジンク
	重剕	<u>م</u> _۲	ボルト頭側	自然さび-同左	自然さび
異種接合面継手 2輪刑 [[[[[[[[[[[[[[[[[[[異	A-II	ナット側	無機ジンク-同左	無機ジンク
		R-v	ボルト頭側	縦回転式-無機ジンク	無機ジンク
	백	V V	ナット側	同上	同上
	美触 型	B-o	ボルト頭側	有機ジンク-無機ジンク	無機ジンク
	種技		ナット側	同上	同上
	鰅	R_o	ボルト頭側	薬剤さび-無機ジンク	無機ジンク
		υα	ナット側	同上	同上
		C-b	ボルト頭側	ブラスト-同左	ブラスト
			ナット側	同上	同上
		C-v	ボルト頭側	縦回転式-同左	*
			ナット側	同上	同上
H	F	C_;	ボルト頭側	無機ジンク-同左	無機ジンク
言がんた	전 사 수		ナット側	同上	同上
能的,		C_0	ボルト頭側	有機ジンク-同左	有機ジンク
車		0-0	ナット側	同上	同上
		C_n	ボルト頭側	自然さび-同左	自然さび
		0-11	ナット側	同上	同上
		(ボルト頭側	薬剤さび-同左	*
		U a	ナット側	同上	同上

シリーズI

*動力工具(ディスクグライダーとダブルアクションサンダーの併用)により黒皮を完全に除去

シリーズ 🛙

継手 分類	試験体名 (接合面構成)	位置	接合面 (母板側-連結板側)	座金との接触面
	R-h9	母板表側	ブラスト-無機ジンク	無機ジンク
·面継手 プB	D-DZ	母板裏側	同上	同上
	B−g	母板表側	グラインダー-無機ジンク	無機ジンク
接合		母板裏側	同上	同上
異種	B-n2	母板表側	自然さび-無機ジンク	無機ジンク
		母板裏側	同上	同上
	C-b2	母板表側	ブラスト-同左	ブラスト
		母板裏側	同上	同上
兼	C ~	母板表側	グラインダー-同左	*
画	∪-g	母板裏側	同上	同上
接合	0 :0	母板表側	無機ジンク-同左	無機ジンク
司種	0-12	母板裏側	同上	同上
<u></u>	(-n)	母板表側	自然さび-同左	自然さび
	c-n2	母板裏側	同上	同上

*動力工具(ディスクグライダーとダブルアクションサンダーの併用)により黒皮を完全に除去

3-2-2 接触面処理

a) 粗面系

シリーズ I のグリットブラスト仕上げでは, 黒皮を完全に除去し, 表面粗さパラメータ RzJIS が 75μm 以下となるように行った.シリーズ II のグリットブラスト仕上げでは, 再利用する鋼板の旧接触面を完 全に除去し, 表面粗さパラメータ RzJIS が 75μm 以下となるように行った.

縦回転式動力工具仕上げでは、一般的な回転式の動力工具(ディスクグライダーとダブルアクション サンダーの併用)により黒皮を完全に除去した後、安定的な仕上がりを実現するため熟練技術者に施工 を依頼した.下向き姿勢で試験体の長手方向に縦回転式工具を前後移動させ(図3-2-1),1接触面(ボ ルト孔数2)当たり約2分かけて丁寧に仕上げた.

グラインダー仕上げでは、上述のグリットブラスト仕上げ(シリーズ II)により旧接触面を完全に除 去するとともに既設部材の接触面状態を模擬した後、動力工具(ディスクグライダーとダブルアクショ ンサンダーの併用)により素地調整した.最後はダブルアクションサンダーによって、素地調整程度 2 種(ISO St3 相当)まで接触面を仕上げた.安定的な仕上がりを実現するため熟練技術者に施工を依頼 した.施工状況を図 3-2-2 に示す.

b) 塗膜系

無機ジンクと有機ジンクの塗布は、ボルト締めを行う約4か月前に実施した. 乾燥塗膜厚は75µmを 目標値とした. 無機ジンクは前項で述べたグリットブラスト仕上げと同等の除せい直後に日本ペイント 製ニッペジンキー1000QC-H を塗布し、有機ジンクは動力工具(ディスクグライダーとダブルアクショ ンサンダーの併用)により黒皮を完全に除去した後に塗布した. 有機ジンクは、高摩擦型ではなく一般 のもの(以下、非高摩擦と呼ぶ)とした.

c) さび系

自然さびと薬剤さびは、動力工具(ディスクグライダーとダブルアクションサンダーの併用)により 黒皮を完全に除去した粗面上に生成させた.自然さびは約2か月間の沿岸部(千葉県富津市)における 屋外曝露に依って生成させた(図3-2-3).薬剤さびは、さび促進剤(ヒットロックB)に依って生成さ せた.さび促進剤は、ボルト締めを行う約48時間前に塗布(刷毛で2回塗り、図3-2-4))し、その後 室内環境で乾燥させた.生成後の自然さびおよび薬剤さびにおいて浮きさびは確認されなかった.

図 3-2-1 縦回転式動力工具による接触面 v の施工状況

図 3-2-2 グラインダーによる接触面gの施工状況

図 3-2-3 接触面 n の屋外曝露状況

図 3-2-4 室内における接触面 a の乾燥状況

d) 各接触面の表面粗さ

各接触面の状況を把握するため、ボルト締め前に、表面粗さ計(サーフテスト SJ-210)を用いて粗さ 計測を実施した. 各接合面構成の試験体 1 体ずつを対象に、図 3-2-5 に示す位置において、表面粗さパ ラメータ R_{zJIS} ならびに R_a を計測した. 参考のために塗膜系やさび系の接触面についても計測した. 各 計測箇所では、評価長さを 4mm として 5 回ずつ計測した際の平均値を記録した(評価長さの影響につ いては付録を参照されたい). 計測結果を表 3-2-1 に示す. グリットブラスト仕上げの接触面について は、 R_{zJIS} が 75µm 以下であったことが確認された(付表 3-2-1). 有機ジンク塗布の接触面では、 R_{zJIS} と R_a が無機ジンクの場合の 1/3~1/2 程度であった.

←固定側

図 3-2-5 接触面に関する表面特性の計測位置

					-							
		R	a		R _{zJIS}							
試驗体名	平均值	直 [μm]	標準偏	差 [μm]	平均值	直 [μm]	標準偏差 [µm]					
試験体名 A-b-1 - A-n-1 - B-v-1 - B-o-1 - C-b-1 - C-v-1 - C-i-1 - C-o-1 -	表面または 母板	裏面または 連結板	表面または 母板	裏面または 連結板	表面または 母板	裏面または 連結板	表面または 母板	裏面または 連結板				
A-b-1	ブラスト	無機ジンク	ブラスト	無機ジンク	ブラスト	無機ジンク	ブラスト	無機ジンク				
	11.1	5.38	1.51	0.889	39.2	18.8	5.56	3.45				
A-n-1	自然さび	無機ジンク	自然さび	無機ジンク	自然さび	無機ジンク	自然さび	無機ジンク				
	6.38	6.15	1.01	0.889	22.1	21.7	4.32	3.69				
B-v-1	縦回転式	無機ジンク	縦回転式	無機ジンク	縦回転式	無機ジンク	縦回転式	無機ジンク				
	5.72	5.82	2.12	1.16	20.1	20.5	7.09	3.87				
B-o-1	有機ジンク	無機ジンク	有機ジンク	無機ジンク	有機ジンク	無機ジンク	有機ジンク	無機ジンク				
	1.91	5.77	0.392	1.82	7.22	20.2	1.65	5.66				
B-a-1	薬剤さび	無機ジンク	薬剤さび	無機ジンク	薬剤さび	無機ジンク	薬剤さび	無機ジンク				
	3.93	5.91	0.624	0.642	14.4	20.8	2.17	2.45				
<u></u>	ブラ	スト	ブラ	スト	ブラ	スト	ブラ	スト				
C-0-1	10	.0	1.3	33	35	.2	4.49					
C v 1	縦回	転式	縦回	転式	縦回	転式	縦回転式					
C-v-1	3.2	20	0.8	47	11	.1	3.73					
C ; 1	無機さ	ジンク	無機:	ジンク	無機	ジンク	無機ジンク					
C-F-1	5.4	40	1.	14	19	.6	4.44					
C a 1	有機:	ジンク	有機:	ジンク	有機	ジンク	有機ジンク					
C-0-1	2.0	05	0.3	96	7.8	35	1.62					
C = 1	自然	さび	自然	さび	自然	さび	自然さび					
C-II-1	6.4	47	1.2	29	22	.7	16.5					
C a 1	薬剤	さび	薬剤	さび	薬剤	さび	薬剤	さび				
C-a-1	3.:	59	0.7	58	13	.5	2.35					

表 3-2-1	表面粗さの計測結果	(続く)
10 2 1	公田位しい日本市本	\496 \ /

シリーズI

表 3-2-1 表面粗さの計測結果(続き)

シリーズ II

		R	a		R _{zJIS}							
試験体名	平均值	直 [μm]	標準偏	差 [µm]	平均值	直 [μm]	標準偏差 [µm]					
	表面または 母板	裏面または 連結板	表面または 母板	裏面または 連結板	表面または 母板	裏面または 連結板	表面または 母板	裏面または 連結板				
D 1 1	ブラスト	無機ジンク	ブラスト	無機ジンク	ブラスト	無機ジンク	ブラスト	無機ジンク				
D-02-1	15.3	5.91	2.15	1.24	65.3	21.7	7.29	5.53				
B-g-1	グラインダー	無機ジンク	グラインダー	無機ジンク	グラインダー	無機ジンク	グラインダー	無機ジンク				
	4.98	5.47	1.40	1.12	25.1	19.6	6.84	4.29				
D -2 1	自然さび	無機ジンク	自然さび	無機ジンク	自然さび	無機ジンク	自然さび	無機ジンク				
D-112-1	5.72	6.19	2.12	0.926	20.1	22.1	7.09	3.91				
C b2 1	ブラ	スト	ブラ	スト	ブラ	スト	ブラスト					
C-02-1	16	.0	1.'	77	67	.4	6.76					
Cal	グライ	ンダー	グライ	ンダー	グライ	ンダー	グラインダー					
C-g-1	4.9	99	1.1	35	24	.7	5.90					
C 2 1	無機ミ	ジンク	無機	ジンク	無機	ジンク	無機ジンク					
C-12-1	5.9	91	1.2	25	21	.3	4.56					
C n2 1	自然	さび	自然	さび	自然	さび	自然さび					
C-112-1	8.2	20	1.1	27	28	.0	4.86					

表 3-2-2 膜厚の計測結果(続く)

シリーズI

評判 試験体名 平 表面また 母板 A-b ブラス A-n 自然さ B-v 縦回転 - - B-v 7 B-o 101 B-a 東剤さ 19.5 - C-b - C-v 第 C-v - C-i - C-o - C-n - C-a -	平均值	直 [µm]	標準偏差 [µm]					
	表面または 母板	裏面または 連結板	表面または 母板	裏面または 連結板				
A 1.	ブラスト	無機ジンク	ブラスト	無機ジンク				
A-0	-	79.1	-	10.6				
A_n	自然さび	無機ジンク	自然さび	無機ジンク				
A-11	58.2	74.7	7.52	14.1				
Bw	縦回転式	無機ジンク	縦回転式	無機ジンク				
B-v	-	83.3	-	13.3				
P.o.	有機ジンク	無機ジンク	有機ジンク	無機ジンク				
В-0	101	83.6	16.6	14.8				
Ра	薬剤さび	無機ジンク	薬剤さび	無機ジンク				
D-a	19.5	77.4	4.15	10.8				
Ch	ブラ	スト	ブラスト					
C-0		-	-					
C v	縦回	転式	縦回転式					
C-V		-	-					
C i	無機ミ	ジンク	無機ジンク					
C-1	81	.8	13.2					
Ca	有機ジ	ジンク	有機ジンク					
C-0	87	.0	14.0					
C n	自然	さび	自然さび					
C-II	59	.8	8.41					
C a	薬剤	さび	薬剤さび					
C-a	19	.8	5.40					

	平均值	直 [µm]	標準偏差 [µm]					
平均値 [µm]標準偏差 表面または 裏面または 連結板表面または 母板裏面または 連結板表面または 母板B-b2ブラスト無機ジンクブラスト無機ジンク月-61.8B-gグラインダーグラインダー無機ジンク月-63.6B-n2自然さび三ブラストグラインダーブラストアウスト三ク55.660.46.17C-b2ブラストブラストブラストC-i2焼機ジンク無機ジンク無機ジンケー日然さび14.2自然さび自然さび	裏面または 連結板							
D 12	ブラスト	無機ジンク	ブラスト	無機ジンク				
B-62	-	61.8	-	11.5				
P a	グラインダー	無機ジンク	グラインダー	無機ジンク				
D-g	-	63.6	-	9.06				
D2	自然さび	無機ジンク	自然さび	無機ジンク				
D-112	55.6	60.4	6.17	14.6				
Ch	ブラ	スト	ブラスト					
C-02		-	-					
C a	グライ	ンダー	グラインダー					
C-g		-	-					
C 2	無機	ジンク	無機ジンク					
C-12	52	9	14.2					
C m2	自然	さび	自然さび					
C-n2	57	.6	8.40					

表 3-2-2 膜厚の計測結果(続き)

シリーズII

表面粗さと同様に、ボルト締めの前に、渦電流式膜厚計(SWT9300)を使用して塗膜やさびといった被覆膜の膜厚を計測した.ただし、全試験体を対象とし、計測箇所は各ボルト孔周辺について2か所とした(図3-2-5).計測結果は表3-2-2の通りである。シリーズIの試験体では、無機ジンクの膜厚は80 μm 程度(目標値にほぼ一致)であり、有機ジンクの膜厚も無機ジンクと同等であった.自然さびの 腹厚は薬剤さびの3倍程度で比較的厚かったことが確認された.シリーズIIの試験体では、無機ジンクの膜厚は50~60 μm 程度(結果的に目標値より低め)であった.自然さびについてはシリーズIと同等であった.

3-2-3 ボルト締め

高力ボルトの締付けはトルク法で行った.1次締めは設計ボルト軸力(205kN)の 60%,2次締めは同 110%を目標に締付けた.各試験体とも、リラクセーション試験に供するボルト2本を挿入する側をす べり側、その反対側を固定側として区別した.すべり側の2次締めにおける導入ボルト軸力は、3-4-1 で述べるひずみゲージの出力値を参照して管理した.その結果導入された軸力の計測結果は、3-4-2、 3-5-2において示す.固定側については、すべり耐力試験において先行してすべらぬよう、さらに 20kN の増し締めとした.

3-3 異種接合面継手のボルト軸力推移(シリーズ I)

本項では、リラクセーション試験の方法を説明し、得られた試験結果に基づいて、異種接合面継手におけるボルト軸力低下の支配因子について考察する.

3-3-1リラクセーション試験の方法

リラクセーション試験は、ボルトの締付け時点から28日間(672時間)かけて行った. 試験対象は、 すべり側の合計66本のボルトとし、ボルト軸力をひずみゲージ(ゲージ長5mm)により計測するため、 ボルト頭にリード線を通すための孔を明け、ボルト軸部(母材の板厚中央の位置)にひずみゲージ2枚 を貼付けた(図3-3-1).このゲージ2枚の出力の平均値をボルト軸部の軸ひずみとし、これに所定の換 算率を乗じることでボルト軸力を取得した.この換算率は、事前に同じロットのボルト3本を対象とし た引張試験に依って決定されたものである.ダミーボルト(締付けをせず、試験体と同じ環境で保管) についても軸ひずみを計測し、温度補正に用いた.

3-3-2 リラクセーション試験の結果

リラクセーション試験の結果を表 3-3-1 に示す. 締付け直後(約 30 秒後)と 672 時間後(28 日後) におけるボルト軸力の計測結果を,それぞれ導入ボルト軸力と残存ボルト軸力として示し,それぞれの 軸力の設計ボルト軸力に対する比率(以下,設計軸力比率と呼ぶ)と,残存ボルト軸力の導入ボルト軸 力に対する比率(以下,軸力残存率と呼ぶ)についても示している.なお,計測の不具合に因り軸力が 計測できなかった項目もあり,それらは表中において×で示している.導入ボルト軸力の設計軸力比率 は 106%~118%であり, 3-2-3 で述べた目標値(110%)に近い値であった.

まず,試験体Cに関する軸力残存率の経時変化を図3-3-2に示す.図中には,接合面構成ごとに求めた回帰直線と決定係数も示している.同図からは,試験体Cにおいて,軸力残存率が指数関数的に減衰したことが確認できる.ただし,その低下速度は接合面構成ごとに異なる傾向が示されており,28日後

図 3-3-1 接触面に関する表面特性の計測位置

表 3-3-1 リラクセーション試験の結果

(a) タイプA (試験体 A-b, A-n)
 (b) タイプB (試験体 B-v, B-o)
 (c) タイプB (試験体 B-a)
 図 3-3-3 軸力残存率の経時変化(異種接合面継手の試験体)

経過時間(x)[時]

経過時間(x)[時]

経過時間(x)[時]

における軸力残存率の3体平均値(接合面構成の特性を表す代表値)によると、軸力低下が著しい順に 試験体 C-i, C-n, C-o, C-a, C-b, C-v となっている.

っづいて,試験体A,Bに関する軸力残存率の変化を図3-3-3に示す.同図においても,軸力残存率 が指数関数的減衰を示している.この傾向は以降も続くと推測され,異種接合面継手においても同種接 合面継手と同様に,軸力残存率が指数関数的に減衰するとみなしてよいと考えられる.また,軸力残存 率の低下速度は,接合面構成ごとに多少異なる傾向が示されており,28日後における軸力残存率の3 体平均値からは,軸力低下が試験体 B-o, B-v, A-n, B-a, A-bの順位に顕著であったことがうかが える.ただし,いずれの試験体でも軸力残存率は粗面系の試験体(C-b, C-v)未満であったものの試験 体 C-i以上の値であった.

3-3-3ボルト軸力低下の支配因子

ここでは、試験体A、Bの軸力残存率を、接合面構成ごとに、試験体Cの減衰率に基づき推定することを試み、その結果から異種接合面継手におけるボルト軸力低下の支配因子について考察する.推定にあたって参照する試験体Cは、試験体A、Bと同様の条件で施工された接触面を有する試験体である(以下、基準試験体と記す.異種接合面継手の各試験体について2種類ずつ存在する).軸力残存率としては締付けから672時間後の試験体における軸力残存率の3体平均値(表3-3-1)を用い、想定因子の異なる2つの方法で推定した結果の推定精度比較から支配因子を検討する.

a) 基準試験体軸力残存率の平均値による推定(方法 I)

ある接合面構成の軸力残存率 r を次式により求める.

$$r = 1 - \delta$$

= 1 - ($\delta_1 + \delta_2 + \delta_{\text{sthere}}$) (1)

ここに、 δ はその構成の軸力減衰率、 δ_1 はその構成の第1種被覆膜に関連した軸力減衰率、 δ_2 は同第2 種に関連した軸力減衰率、 δ_{others} は被覆膜以外の因子(鋼材のリラクセーション、ねじ部・ワッシャー 等の影響)による軸力減衰率である. δ_i (*i* = 1, 2)は、粗面系の接触面では0とする.

 δ_i は、基準試験体における実測の軸力残存率 r_i (3体平均値)より、次のように表せるものとする.

$$\delta_i = \frac{1}{2} (1 - r_i - \delta_{\text{others}})$$
⁽²⁾

ここで、 δ_{others} は試験体によらないと仮定している.結局、式(1)、(2)より、rは次のように求まる.

$$r = \frac{1}{2}(r_1 + r_2) \tag{3}$$

このように,基準試験体軸力残存率の平均値によりrを推定する方法を,方法Iと呼ぶこととする. b) 被覆膜以外の因子と膜厚差も考慮した推定(方法II)

次式で求まる δ_i を式(1)に代入することでrを算定する.

$$\delta_{i} = \begin{cases} \frac{t_{i}}{t_{i,r}} (1 - r_{i} - \delta_{\text{others}}) & (被覆膜あり) \\ 0 & (被覆膜なし) \end{cases}$$
(4)

ここで, *t*_iは*r*を推定する接合面構成の第*i*種被覆膜の推定合計膜厚, *t*_{i,r}は第*i*種被覆膜を有する基準 試験体の推定合計膜厚¹²⁾である. 推定合計膜厚は, 各試験体における実測膜厚の3体平均値(**表 3-3-2**)

III-3-11

をボルトに締め付けられる被覆膜面数(例えば,試験体 B-v では 4, C-i では 6) で乗じることで得られる.式(4)においても δ_{others} は試験体によらないと仮定している.ただし,式(3)では δ_{others} は相殺されているが,式(4)に基づき r を算定する際には δ_{others} は必ずしも相殺されない.そこで, δ_{others} を次のように求めることとした.

$$\delta_{\text{others}} = 1 - \frac{1}{2} \left(r_{\text{blast}} + r_{\text{vertical}} \right)$$
(5)

ここで、 r_{blast} と $r_{vertical}$ は、それぞれ接合面構成 C-b と C-v の軸力残存率(3 体平均値)であり、 δ_{others} は 2.69%となった.

このように、被覆膜以外の因子として、基準試験体との膜厚の違いや、鋼材のリラクセーション、ねじ部・ワッシャー等の影響をより具体的に考慮してrを推定する方法を、 方法 II と呼ぶこととする.

c) 推定結果の比較

試験体 A, Bのrについて,実測値と方法 I, IIによる推定値を比較した結果を図 3-3-4 に示す.同図 は、方法 I によりrを推定した場合,試験体 A に対しては実測値より小さなrを,試験体 B に対しては 実測値より大きなrを与え,ボルト軸力の低下を過小評価する傾向があることを示している.一方,方 法 II を用いると軸力残存率の推定値の精度が向上することが示されている.

方法 II によってより高い精度で実測値を再現できたことからは、次のことが示唆される. すなわち、 異種接合面継手においては、各接触面における被覆膜の有無・種類、被覆膜の膜厚、鋼材のリラクセー ション、ねじ部・ワッシャー等がボルト軸力低下の支配因子であると考えられる. 一方、タイプ B にお いて、異種の接触面が接触している影響については、これを考慮しない方法 II によって実測値が高い精 度で再現されたことから、今回検討した組合せにおいてその影響は小さく、高々方法 II の再現誤差程度 であると推察される.

3-4 異種接合面継手のすべり挙動(シリーズ I)

本項では、はじめにすべり耐力試験について説明する.つづいて、得られた試験結果と観察されたす べり性状について報告し、先行研究の結果も引用して、異種接合面継手におけるすべり係数について考 察する.

図 3-3-4 基準試験体(試験体C)の試験結果に基づく軸力残存率の推定結果

3-4-1 すべり耐力試験の方法

すべり耐力試験は、リラクセーション試験後に実施した.いずれの試験体も、試験日の2日前から当日までの間に最後のボルト軸力計測(得られた軸力を以下,試験直前のボルト軸力と呼ぶ)を行ってから載荷した.試験状況を図 3-4-1 に示す.

載荷においては、東京工業大学が所有する載荷能力 1000kN の万能材料試験機を用い、引張荷重を 2kN/s 程度の速度で主すべりが発生するまで単調増加させた.載荷中は、100Hz のサンプリングレート で荷重を計測した.また、母板間の相対変位、第1ボルト(すべり側の試験体内側ボルト)のボルト孔 における母板・連結板間の相対変位(以下、第1ボルト孔の相対変位と呼ぶ)についても同じサンプリン グレートで計測した.すべり耐力は、主すべりの発生によって大きな音(すべり音)と共に荷重低下が 始まった時点の荷重値とした.

3-4-2 すべり耐力試験の結果

すべり耐力試験の結果を表 3-4-1 に示す.計測の不具合に因り計測できなかった項目は×で示している.表中には、主すべり発生状況も表記している.いずれの試験体も主すべり発生時に明瞭な荷重低下を示したため、すべり耐力は明確に特定できた.ただし、縦回転式、有機ジンク、自然さびの接触面を有する試験体では、すべり音が確認されない場合が多かった.

表中のすべり係数は次式により算出した.

$$\mu_i = \frac{P_{\rm cr}}{mnN}$$

(6)

ここに、 $P_{\rm er}$ はすべり耐力、m(=2)は接合面数、n(=2)はボルト本数、Nはボルト軸力、 μ_i はすべり 係数であり、添え字iはすべり係数が設計軸力をNとして求めたもの(i=1)か、試験直前のボルト軸 力をNとして求めたもの(i=2)かを表している. **表 3-4-1**には、すべり係数のばらつきを表す推定量 として標準偏差も表記している.標本数が3ではあるが、異種接合面継手の各試験体に関する標準偏差 は、標準的な継手の各試験体に関する標準偏差と同等の値であった.得られたすべり係数の具体的な比

図 3-4-1 すべり耐力試験の状況

較は, 3-4-4 において行う.

すべり耐力試験で得られた,各試験体の荷重-相対変位関係を図 3-4-2 に示す. 同図からわかる通り, 主すべりが発生するまでの間,試験体A,Bにおいても荷重は単調に増加した. すべり耐力までの荷重 領域において,異種接合面継手はすべり耐力以下の荷重に対して同種接合面継手と同等に安定した剛性 を示し得るものと考えられる.

表 3-4-1 すべり耐力試験の結果

3-4-3 観察されたすべり性状

a) すべり後の接触面性状

すべり後の接触面性状を把握するため、3次元形状測定機(キーエンス VR-3200)を用いた光学計測 を行った.計測は、接触面の損傷が著しいボルト孔周辺の状況を比較するため第1ボルト孔周辺を主対 象とし、各接触面のすべり前後の状況を比較するため母板と接触していなかった表面(以下,非接触部 と呼ぶ)についても対象とした.

まず,試験体 C の連結板に対する計測結果を図 3-4-3 に示す.いずれもすべり方向を紙面横方向とし ており,コンター図は計測で得られた高さデータを撮影画像と合成させたものである.試験体 C-b の高 倍率画像からは,ボルト孔周辺では粗面の細かい凸部が消失しすべり方向に筋目状の傷が発生している ことが確認できる.試験体 C-v の高倍率画像では,非接触部において確認できるブラシによる傷が,ボ ルト孔周辺では凸部を中心に消失していることがわかる.試験体 C-i の高倍率画像からは,ボルト孔周 辺では広い範囲で素地が露出し,塗膜が残存しているのは素地がくぼんでいる部分に限られていること がわかる.一方,試験体 C-o においては,低倍率のコンター図からわかる通り,塗膜が剥離した領域と 対面で剥離した塗膜が付着した領域が入り乱れていた.高倍率画像はボルト孔周辺の中でも塗膜の剥

図 3-4-3 すべり後の接触面の計測結果(試験体 C)

離・付着が起きていない領域を撮影したものであり、一部に素地の露出が確認できる.このように、試験体 C-o では塗膜-素地間の界面破壊が支配的であったことがわかる.さび系の試験体 C-n, C-a に関しては、ボルト孔周辺では素地の凸部を中心にさびがすり減っている様子が示されている.

っづいて,試験体Bの連結板と母板について第1ボルト孔周辺の計測結果を図3-4-4に示す.いずれ もすべり方向を紙面横方向としており,同図には比較のために試験体Cの非接触部に対する計測結果 (図3-4-3)を一部再掲している.試験体B・vにおいては,高倍率画像から連結板のボルト孔周辺にお いて接触面が著しくすり減り素地も平坦化していることが確認できる.ブラストによる素地の凹凸がほ ぼなくなるほど表層が素地ごと削り取られており,その程度は基準試験体(C-i)よりも著しいといえる. 一方,母板側にはブラシによる傷の凸部において,連結板から絡め取られたと考えられる塗膜が多く残 されており,各部ですべり方向に直交するブラシの傷が連結板の接触面に食い込みながらすべっていた ものと推察される.試験体B・oでは,高倍率画像に示されているように,ボルト孔周辺においても連結

板の膜厚の減少が比較的小さかったことが見てとれ,試験体B-vとは対照的であった.母板においては, 低倍率画像からわかる通り,ボルト孔周辺で塗膜が広い範囲で剥離しており,剥離と付着が入り乱れて いた試験体 C-oと状況は異なっていた.剥離した塗膜は連結板に付着し残存するものもあれば,試験体 解体時に剥がれ落ちたものもあった.試験体 B-oでは,付着が弱いことで母板側の有機ジンク塗膜が選

図 3-4-4 すべり後の接触面の計測結果(試験体 B)

択的に剥離したものと考えられる. 試験体 B-a では,基準試験体(C-a, C-i)の接触面の損傷状況と大きな違いは見受けられなかったが,高倍率画像に示されているように連結板側には粉末化した自然さびの付着が認められ,無機ジンクとともに自然さびもすり減っていたことが確認された.

b) すべり後の膜厚

前項で確認された接触面における被覆膜の減少・剥離状況について更に検討するため、すべり試験後の接触面に対する膜厚計測を実施した.計測箇所としては、リラクセーション試験前にも計測した各ボルト孔周辺2か所のほか、一般部としてボルト孔の縁から28mm離れた2か所も含めた(図3-4-5). すべり試験後のボルト孔周辺には、ボルトによる締付けの影響とすべり時の擦れの影響が考えられる. 一般部ではすべり時の擦れの影響のみが主として考えられる.

図 3-4-6 は、試験体 C-i, C-o, C-n について、ボルト締め前におけるボルト孔周辺とすべり試験後に おける一般部の計測結果を比較した結果である. 試験体 C-i, C-n では、前者に対して後者がそれぞ れ一定に近い割合で低い値を示しており、すべりに因り被覆膜の表層で擦れが生じていたと考えられる. 一方、試験体 C-o では両者の差が小さく擦れはほとんど発生しなかったものと推察される.

図 3-4-7 では、これらの接合面構成の試験体について、ボルト締め前とすべり試験後におけるボルト 孔周辺の計測結果を比較している. 試験体 C-i, C-n については、図 3-4-6 でみたよりも大きな割合で 膜厚が低下しており、すべりによる被覆膜の擦れに加え、ボルトの締付けによる被覆膜のクリープによ る膜厚減少も大きかったことが示唆されている.一方、試験体 C-o では塗膜の剥離・付着によって複数 の箇所においてすべり後の膜厚が大きな増減を示している.

図 3-4-8 では、試験体 B の連結板に関して、ボルト締め前におけるボルト孔周辺とすべり試験後における一般部の計測結果を比較している. 試験体 B-o では塗膜の剥離が広範囲に及んでいたため、一般

図 3-4-5 すべり耐力試験後における膜厚の計測箇所(a, c)

図 3-4-6 ボルト締め前におけるボルト孔周辺の膜厚とすべり試験後における一般部の膜厚(試験体 C)

(c) 試験体 C-n における膜厚(単位:μm)

記号は計測箇所を表している.

図 3-4-7 ボルト締め前におけるボルト孔周辺の膜厚とすべり試験後におけるボルト孔周辺の膜厚 (試験体 C)

記号は計測箇所を表している.

図 3-4-8 ボルト締め前におけるボルト孔周辺の膜厚とすべり試験後における一般部の膜厚(試験体 B)

部においても 8 か所で大幅な膜厚の増加が計測されている. その 8 か所を除いた計測箇所の平均値の差 分(ボルト孔周辺-一般部)は,試験体 B-v では 19.7µm,試験体 B-o では 2.30µm,試験体 B-a では 14.8µm である.連結板における無機ジンクの擦れによる膜厚減少は試験体 B-v, B-a において大きい傾 向にあり試験体 B-o では極端に小さかったことが示されている.

3-4-4 すべり係数

a) タイプA

図 3-4-9 は、タイプ A の試験体のすべり係数 μ と基準試験体のすべり係数 μ (後者は基準すべり係数 と記す)を比較したものである.また、清水ら 3の試験結果(試験体の β (は 0.84. 試験体 A-b 相当)と、 南ら 4の試験結果(試験体の β (は 0.64)も併せて示している.(c)の溶射は、亜鉛アルミ擬合金溶射を 指している.図中には、タイプ A の試験体における接触面の組み合わせを記号で示しており、例え

ば「ブラスト | 無機ジンク」は母板の表面側がブラストで裏面側が無機ジンクであることを意味する(以下,タイプAに関して同様に表す). 同図では,試験体Aのすべり係数の3体平均値は,2つの基準すべり係数の3体平均値のうち低いほう(以下 $\bar{\mu}_2^{low}$ とし,他方を $\bar{\mu}_2^{high}$ とする)に近い値をとる傾向が示されている.

図 3-4-10 は、次式で定義する相対評価指標 ρ_2 によって、 $\bar{\mu}_2^{\text{low}}$ 、 $\bar{\mu}_2^{\text{high}}$ それぞれに対するタイプAの試験体で得られたすべり係数 μ_2 の3体平均値の近接度を評価した結果である.

$$\rho_{2} = \frac{\bar{\mu}_{2} - \bar{\mu}_{2}^{\text{low}}}{\bar{\mu}_{2}^{\text{high}} - \bar{\mu}_{2}^{\text{low}}}$$
(7)

ここに、 $\bar{\mu}_2$ は異種接合面継手の試験体のすべり係数 μ_2 の3体平均値であり、 ρ_2 は $\bar{\mu}_2$ が $\bar{\mu}_2^{low}$ に近ければ0に、 $\bar{\mu}_2$ が $\bar{\mu}_2^{high}$ に近ければ1に近づく.また、 $\bar{\mu}_2$ が $\bar{\mu}_2^{low}$ より小さければ負の値を示す.

図 3-4-10 に示されているように、試験体 A-b の結果以外の試験体に関して ρ_2 は 0 付近の値となった. 試験体 A-b に関しては ρ_2 が-2.54 と他よりもかなり低い値を示しているが、これは試験体 A-b では $\bar{\mu}_2^{low}$ と $\bar{\mu}_2^{high}$ が近接しており ρ_2 の定義式(7)の分母が 0.01 と小さかったためである. 分子の絶対値も 0.03 とま

図 3-4-9 異種接合面継手タイプ A の試験体に関するすべり係数 µ の比較

図 3-4-10 タイプAの試験体で得られたすべり係数の基準すべり係数に対する近接度

た小さいことから, 試験体 A-b についても $\bar{\mu}_2$ は $\bar{\mu}_2^{low}$ に近い値であるといえる.

このように、タイプAの試験体の3体平均値から、タイプAの継手のすべり係数は2種類の接触面 のうちすべり係数(同種接合面継手での値)の低いほうに近い値を示す傾向が確認された.タイプAの 継手において、主すべりは基準すべり係数が低い側の接合面での主すべりに誘発されているものと考え られる.

b) タイプB

図 3-4-11 では、タイプ B の試験体のすべり係数μ2を基準すべり係数と比較している.ここでは、連結板の接触面を本試験の試験体と同様に無機ジンクとした、丹波ら ^{5),6)},橋本ら ⁷⁾,本多ら ⁸⁾,吉岡ら ⁹による結果も示している(試験体のβd はそれぞれ、0.66,0.72,0.44,0.44).特に、本研究と試験体 接

触面の施工条件が近いと考えられるものは同じ図に併記している.また基準すべり係数について,土木 学会の指針(案)10において推奨されているAuも赤線で併記している.また図中には,タイプBの試験 体における接触面の組み合わせを記号で示しており,例えば「縦回転式-無機ジンク」は母板側が縦回 転式で連結板側が無機ジンクであることを意味する(以下,タイプBに関して同様に表す).(f)のグラ インダーは,ディスクグライダーやダブルアクションサンダー等の回転式動力工具で仕上げた接触面 (素地調整程度2種, ISO St3 相当)を指している.

同図に示されているように、すべり係数は一定のばらつきを有しているものの、基準すべり係数の平 均値は橋本らのの自然さびー無機ジンクの結果以外は土木学会の指針(案)10における4aの推奨値以上 の値であった.タイプBのすべり係数についてみると、接触面の組み合わせが縦回転式ー無機ジンクと 薬剤さびー無機ジンクの試験体では0.5以上の値が得られている.ブラストー無機ジンクのすべり係数 においては橋本らのの結果以外ではすべて0.5以上となっている.有機ジンクー無機ジンクでは、すべ り係数が0.35~0.40程度に留まっているが、これは一般の有機ジンク塗料を用いたためと考えられる. 実際、高摩擦型の有機ジンクと無機ジンクを組み合わせたタイプBの試験体では4」として0.51が得ら れている¹³⁾.一方、タイプBのすべり係数と各基準すべり係数を比較すると、その関係性はタイプA と異なり様々であることがわかる.

基準すべり係数に対するタイプ B のすべり係数の関係性を Pcによって評価した結果を,図 3-4-12 に 示す.本試験と吉岡ら 9における薬剤さび-無機ジンクのすべり係数および橋本ら 7のブラスト-無機 ジンクのすべり係数に関しては, P2が 0 付近の値を示している.一方,本試験における縦回転式-無機 ジンクと有機ジンク-無機ジンクのすべり係数については, P2がそれぞれ 0.60 と 0.33 であり,異仕様 の接触面を含む影響として P2が P2^{low}よりも高い値であったことを示している.逆に,本多ら 8の薬剤さ び-無機ジンクや橋本ら 7の自然さび-無機ジンクでは P2がかなり低い値となっている.

縦回転式-無機ジンクの組み合わせで $\bar{\mu}_2$ が $\bar{\mu}_2^{low}$ よりも高かった理由としては,前節で試験体 B-v に関 して述べた連結板側塗膜(無機ジンク)が著しく削り取られた状況から,連結板の接触面に母板の接触 面が深く食込みながらすべった影響が考えられる.有機ジンクー無機ジンクで $\bar{\mu}_2$ が $\bar{\mu}_2^{low}$ よりも高かった 理由としては,低いすべり係数を示した有機ジンクの接触面数がタイプ Bの試験体と基準試験体で異な ったことが考えられる.すなわち,有機ジンクの接触面数が 2 面の前者では同 4 面の後者よりも塗膜の 剥離を起こす弱点の数が少なかったことが影響した可能性がある.実際,前節で述べた通り,試験体 B-o では有機ジンク塗膜においてのみ剥離が認められており,有機ジンク塗膜の弱点が主すべりを誘発

図 3-4-11 タイプ B の試験体に関するすべり係数の比較

図 3-4-12 タイプBの試験体で得られたすべり係数の基準すべり係数に対する近接度

したことが示唆されている.一方,本多ら 0の結果に関して ρ_2 がかなり低い値であった要因としては,理由は不明であるが他の薬剤さび-無機ジンクと比べて, $\bar{\mu}_2^{low}$ (無機ジンク)が高かった点が挙げられる. $\bar{\mu}_2$ については他の薬剤さび-無機ジンクとほぼ同等である.

なお、基準すべり係数データの不足により、縦回転式-無機ジンク、有機ジンク-無機ジンク、ブ ラスト-無機ジンク、回転式-無機ジンクに関する丹波ら 5,6,回転式-無機ジンクに関する橋本ら 7 の₂は算出できなかったが、得られている基準すべり係数とタイプ B のすべり係数の大きさから、多く の場合₂は0付近以上になると推察される.

3-5 異種接合面継手のボルト軸力推移(シリーズ II)

本項では、リラクセーション試験で明らかになった締付け後のボルト軸力推移について述べる.そして、3-4 で扱ったシリーズ I 試験体で得られた試験結果とも比較し、異種接合面継手におけるボルト軸力低下の支配因子について考察する.

3-5-1 リラクセーション試験の方法

リラクセーション試験は、ボルトの締付け時点から 28 日間(672 時間)かけて行った. 試験対象は、 すべり側の合計 42 本のボルトとし、ボルト軸力をひずみゲージ(ゲージ長 1mm)により計測するため、 3-4-1 で述べたようにボルト頭にリード線を通すための孔を明け、ボルト軸部(母材の板厚中央の位置) にひずみゲージ2枚を貼付けた. このゲージ2枚の出力の平均値をボルト軸部の軸ひずみとし、これに 所定の換算率を乗じることでボルト軸力を取得した. この換算率は、事前に同じロットのボルト3本を 対象とした引張試験に依って決定されたものである. 同じロットのダミーボルトについても計測を行い、 その計測値を温度補正に用いた.

3-5-2 リラクセーション試験の結果

リラクセーション試験の結果を表 3-5-1 に示す. 締付け直後(約 30 秒後)と 672 時間後(28 日後) におけるボルト軸力の計測結果を,それぞれ導入ボルト軸力と残存ボルト軸力として示し,それぞれの 軸力の設計ボルト軸力に対する比率(以下,設計軸力比率と呼ぶ)と,残存ボルト軸力の導入ボルト軸

異種接合面継手の試験体									同種接合面継手の試験体																
		締付け直後 28日後										締付け直後				28日後									
	導入軸	力 [kN]	設計軸力比率[%]		残存軸力 [kN]		設計軸力比率 [%]		軸力残存率		[%]			導入軸	力 [kN]	設計軸力]比率 [%]	残存軸	白 [kN]	設計軸力)比率 [%]	軸力]残存率	[%]	
試験体	第1 ボルト 第2 ボルト	試験体 平均	第1 ボルト 第2 ボルト	試験体 平均	第1 ボルト 第2 ボルト	試験体 平均	第1 ボルト 第2 ボルト	試験体 平均	第1 ボルト 第2 ボルト	試験体 平均	3体 平均	試験	体	第1 ボルト 第2 ボルト	試験体 平均	第1 ボルト 第2 ボルト	試験体 平均	第1 ボルト 第2 ボルト	試験体 平均	第1 ボルト 第2 ボルト	試験体 平均	第1 ボルト 第2 ボルト	試験体 平均	3体 平均	
-1	220 220	220	107.5 107.2	107.4	200 197	198	97.5 96.1	96.8	90.7 89.6	90.1			-1	223 227	225	108.6 110.6	109.6	× 214	214	× 104.2	104.2	× 94.1	94.1		
B-b2 -2	222 217	220	108.2 106.1	107.2	196 193	195	95.8 94.3	95.1	88.5 88.9	88.7	88.54	88.54	C-b2	-2	225 229	227	109.7 111.9	110.8	212 215	214	103.3 105.1	104.2	94.2 93.9	94.0	93.51
-3	221 220	220	107.7 107.4	107.5	184 198	191	89.8 96.7	93.3	83.4 90.1	86.7			-3	217 224	221	105.9 109.3	107.6	202 206	204	98.7 100.7	99.7	93.2 92.1	92.7		
-1	226 212	219	110.0 103.6	106.8	206 ×	206	100.7 ×	100.7	91.5 ×	91.5			-1	226 234	230	110.3 114.3	112.3	218 218	218	106.1 106.3	106.2	96.2 93.0	94.6		
B-g -2	220 222	221	107.2 108.3	108	194 206	200	94.7 100.3	97.5	88.4 92.6	90.5	90.79	90.79	C-g	-2	229 223	226	111.7 108.9	110.3	221 ×	221	107.9 ×	107.9	96.6 ×	96.6	95.43
-3	223 218	220	108.7 106.2	107.4	202 ×	202	98.6 ×	98.6	90.7 ×	90.7			-3	225 226	226	109.7 110.3	110.0	× 217	217	× 105.8	105.8	× 95.9	95.9		
-1	221 215	218	107.7 104.8	106.2	200 187	193	97.5 91.2	94.4	90.6 87.0	88.8			-1	223 222	223	108.8 108.4	108.6	201 203	202	98.2 99.3	98.7	90.3 91.6	90.9		
B-n2 -2	219 213	216	106.8 104.0	105.4	197 192	195	96.3 93.7	95.0	90.2 90.0	90.1	89.23	C-i2	-2	222 221	222	108.4 108.0	108.2	× 206	206	× 100.5	100.5	× 93.0	93.0	88.58	
-3	220	220	107.3 107.4	107.4	194 200	197	94.8 ×	94.8	88.3 ×	88.3			-3	217 217	217	106.1 105.7	105.9	189 176	182	92.1 85.8	89.0	86.8 81.2	84.0		
×は	×は計測できたかった項目を表す								-1	245 227	236	119.7 110.9	115.3	×	×	×	×	×	×						
平均	値の計	算でに	はこれは	。 を除	外して	いる.						C-n2	-2	245 227	236	119.7 110.9	115.3	×	×	×	×	×	×	95.19	
											-3	236 217	226	114.9 106.0	110.5	226 205	216	110.2 100.1	105.2	95.9 94.5	95.2				

表 3-5-1 すべり耐力試験の結果

カに対する比率(以下,軸力残存率と呼ぶ)についても示している.なお,計測の不具合に因り軸力が 計測できなかった項目もあり,それらは表中において×で示している.導入ボルト軸力の設計軸力比率 は103%~120%であり,3-4-1で述べた目標値(110%)に概ね近い値であった.

っづいて,試験体 B, C に関する軸力残存率の変化を図 3-5-1 に示す.同図においても,軸力残存率 が指数関数的減衰を示している.この傾向は以降も続くと推測され,異種接合面継手においても同種接 合面継手と同様に,軸力残存率が指数関数的に減衰するとみなしてよいと考えられる.また,軸力残存 率の低下速度は,接合面構成ごとに多少異なる傾向が示されており,28 日後における軸力残存率を図中 の回帰直線から推定すると,軸力低下が試験体 C-i2, B-b2, B-n2, B-g, C-b2, C-n2, C-gの順位に顕 著であったことがうかがえる.いずれの異種接合面継手の試験体でも軸力残存率は粗面系の試験体 (C-b2, C-g) および自然さびの試験体 (C-n2) 未満であったものの試験体 C-i 以上の値であった.

図 3-5-1 軸力残存率の経時変化

3-5-3 ボルト軸力低下の支配因子

3-3-3と同様に,試験体 B の軸力残存率を,接合面構成ごとに,試験体 C の減衰率に基づき推定する ことを試み,その結果から異種接合面継手におけるボルト軸力低下の支配因子について考察する.

推定にあたっては、ブラストとグラインダーの接触面については $\delta_i \ge 0$ とした. δ_{others} の算定には接合面構成 C-b2 と C-g の軸力残存率(3 体平均値)を用い、 δ_{others} は 5.53%となった.

試験体 A, B の r について, 実測値と方法 I, II による推定値を比較した結果を図 3-5-2 に示す. 同図は, 方法 I により試験体 B の r を推定した場合,実測値より大きな r を与え,ボルト軸力の低下を過小評価 する傾向があることを示している.一方,方法 II を用いると軸力残存率の推定値の精度が向上すること が示されている.

方法 II によってより高い精度で実測値を再現できたことから、本章で検討した接合面構成についても、 各接触面における被覆膜の有無・種類、被覆膜の膜厚、鋼材のリラクセーション、ねじ部・ワッシャー 等がボルト軸力低下の支配因子であると考えられる.一方、タイプ B において、異種の接触面が接触し ている影響については、これを考慮しない方法 II によって実測値が高い精度で再現されたことから、今 回検討した組合せにおいてその影響は小さく、高々方法 II の再現誤差程度であると推察される.

図 3-5-2 基準試験体(試験体C)の試験結果に基づく軸力残存率の推定結果

3-6 異種接合面継手のすべり挙動(シリーズ II)

本項では、すべり耐力試験で明らかになった異種接合面継手のすべり係数について報告する.

3-6-1 すべり耐力試験の方法

すべり耐力試験は、リラクセーション試験後に実施した.いずれの試験体も、試験日の2日前から当日までの間に最後のボルト軸力計測(得られた軸力を以下,試験直前のボルト軸力と呼ぶ)を行ってから載荷した.試験状況を図 3-6-1 に示す.

図 3-6-1 すべり耐力試験の状況

載荷においては、横浜国立大学が所有する載荷能力 2000kN の万能材料試験機を用い、引張荷重を 2kN/s 程度の速度で主すべりが発生するまで単調増加させた.載荷中は、100Hz のサンプリングレート で荷重を計測した.また、母板間の相対変位、第1ボルト(すべり側の試験体内側ボルト)のボルト孔 における母板・連結板間の相対変位(以下、第1ボルト孔の相対変位と呼ぶ)についても同じサンプリン グレートで計測した.すべり耐力は、主すべりの発生によって大きな音(すべり音)と共に荷重低下が 始まった時点の荷重値とした.

3-6-2 すべり耐力試験の結果

すべり耐力試験の結果を表 3-6-1 に示す.計測の不具合に因り計測できなかった項目は×で示している.表中には,主すべり発生状況も表記している.いずれの試験体も主すべり発生時にすべり音は確認されなかったが,荷重は明瞭な低下を示したためすべり耐力は明確に特定できた.

すべり耐力試験で得られた,各試験体の荷重-相対変位関係を図 3-6-2 に示す. 同図からわかる通り, 主すべりが発生するまでの間,試験体 B においても荷重は単調に増加した. すべり耐力までの荷重領域 において,異種接合面継手はすべり耐力以下の荷重に対して同種接合面継手と同等に安定した剛性を示 し得るものと考えられる.

表 3-6-2 は荷重-相対変位関係における初期軸剛性を試験体間で比較したものである.向かい合う 2 枚の母板端間(標準間隔 10mm)の相対変位に基づく母板間軸剛性と,すべり側第1ボルト位置の母板 と連結板の相対変位に基づく第1ボルト孔軸剛性に加え,母板間が連結板なしに母板と同一の鋼板で連 続的につながっている場合を仮定した初期軸剛性(38000 kN/mm)と母板間軸剛性の比(母板間軸剛性 比と呼ぶ)を示している.同表の母板間軸剛性比に関する各試験体の3体平均値をみると,およそ1/20 ~1/12であり,主すべり発生前の荷重が小さい段階でも微小なすべりが漸増していることが推察される.

図 3-6-2 各試験体の荷重-相対変位関係(続く)

*: 計測の不具合により第1ボルト孔における核対変位の代わりに母板間の相対変位を表示

図 3-6-2 各試験体の荷重-相対変位関係(続き)

各試験体の3体平均値を比較すると、試験体C-gでは約1/20であり最も低いことがわかる. 異種接合面 継手の中では試験体B-b2と試験体B-gでは試験体C-i2と同等以上の母板間軸剛性比であることがわかる.

図 3-6-3 では、第1ボルト孔軸剛性と母板間軸剛性を比較している. 同図から、第1ボルト孔で評価 すると初期軸剛性は接合面構成によらず試験体間で大きく異なっており、主すべり発生前の微小なすべ りがすべり側と固定側の接合面の全面で均一に進行する訳ではないことを示している.

3-6-3 得られたすべり係数

本節で示したシリーズ II の試験結果を図 3-4-11 に追記したものが,図 3-6-4 である. 同図に示され

試験体		第1ボルト孔	母板間		母板間軸剛性比	
		試験体ごと [kN/mm]	試験体ごと [kN/mm]	平均値 [kN/mm]	試験体 ごと	平均值
B-b2	-1	1.153.E+04	2.908.E+03		1/ 13.1	
	-2	2.024.E+04	2.976.E+03	3138	1/ 12.8	1/ 12.1
	-3	1.795.E+04	3.528.E+03		1/ 10.8	
	-1	1.853.E+04	2.622.E+03	2541	1/ 14.5	
B-g	-2	9.933.E+03	2.540.E+03		1/ 15.0	1/ 15.0
	-3	9.674.E+03	2.459.E+03		1/ 15.5	
	-1	1.398.E+04	2.624.E+03		1/ 14.5	
B-n2	-2	1.096.E+04	1.909.E+03	2338	1/ 19.9	1/ 16.3
	-3	9.021.E+03	2.482.E+03		1/ 15.3	
	-1	1.477.E+04	2.775.E+03	2699	1/ 13.7	
C-b2	-2	2.185.E+04	2.654.E+03		1/ 14.3	1/ 14.1
	-3	1.272.E+04	2.668.E+03		1/ 14.2	
C-g	-1	7.588.E+03	2.178.E+03	1883	1/ 17.4	
	-2	×	×		×	1/ 20.2
	-3	6.580.E+03	1.587.E+03		1/ 23.9	
C-i2	-1	1.056.E+04	2.563.E+03		1/ 14.8	
	-2	9.422.E+03	2.738.E+03	2586	1/ 13.9	1/ 14.7
	-3	8.248.E+03	2.456.E+03		1/ 15.5	
C-n2	-1	1.146.E+04	3.317.E+03		1/ 11.5	
	-2	1.730.E+04	2.143.E+03	2443	1/ 17.7	1/ 15.6
	-3	1.692.E+04	1.870.E+03		1/ 20.3	

表 3-6-2 各試験体の荷重-相対変位関係における初期軸剛性

×は計測できなかった項目を表す

図 3-6-3 評価位置ごとの初期軸剛性の比較

ているように、すべり係数は一定のばらつきを有しているものの、基準すべり係数の平均値は橋本ら ⁷ の自然さび-無機ジンクの結果以外は土木学会の指針(案) 10におけるµa の推奨値以上の値であった. タイプ B のすべり係数についてみると、ブラスト-無機ジンクのすべり係数においては橋本ら⁷の結果 以外ではすべて 0.5 以上となっている.橋本ら⁷の結果で低いすべり係数が得られた理由としては、母

(d) ブラストー無機ジンク (e) グラインダーー無機ジンク (f) 自然さびー無機ジンク
 図 3-6-4 異種接合面継手タイプBの試験体に関するすべり係数の比較

図 3-6-5 タイプBの試験体で得られたすべり係数の基準すべり係数に対する近接度

板(ブラスト)の表面粗さが小さく、基準すべり係数(ブラスト)が低いことから分かるようにブラス トの仕上がりの違いによる可能性が考えられる. グラインダーー無機ジンクでは、丹波ら5)の結果はす べり係数の平均値が0.50以上となっているが、それ以外の結果では0.40を下回っている. 自然さびー 無機ジンクでは、橋本らの結果で3体平均が0.50を下回るすべり係数が得られているが、これは基準 すべり係数(自然さび)が本研究で得られた値より著しく低いためであると考えられる. 橋本らのが対 象とした自然さびは耐候性鋼材の保護性さびであるため、さびの性状の違いがすべり係数に影響を与え た可能性がある.

基準すべり係数に対するタイプBのすべり係数の関係性を3-4で導入した_{P2}によって評価した結果を, 図3-6-5に示す.ブラストー無機ジンクの組み合わせでは、本試験と橋本らつの結果の双方で0を超え る値が得られており、得られるすべり係数は基準すべり係数²low以上となっていることがわかる.グラ インダーー無機ジンクでは、0を下回る値が示されているが、この組み合わせのすべり係数の²low</sup>との 違いはわずかである.自然さびー無機ジンクでは、本試験と橋本らつの結果の双方で0を大きく下回る 値となっている.この組み合わせでは十分な²lowを示す接触面を用いないと、すべり係数が低い異種接 合面継手となる可能性があると考えられる.この組み合わせですべり係数が低下した原因は定かではな く、従来の自然さびや無機ジンクの接触面の継手とは微視的に異なるメカニズムで主すべりが起きてい る可能性もあるため注意が必要である.

3-7 異種接合面継手の適用性

本節では、3-4~3-6 で述べた知見に基づき、タイプAとタイプBの異種接合面継手に関して、ボルト軸力低下後のすべり係数確保の観点からその適用性を考察する.そして、適用可能性が高いと考えられる継手については設計すべり係数も検討する.

3-7-1 タイプA

3-4-3 で述べたように、タイプ A の継手においては 2 つの接合面のうちすべり係数の低いほうに誘発 されてすべりが発生すると推察され、双方の接合面の基準すべり係数が十分把握されていればタイプ A は適用可能であると考えられる.特に、ブラスト | 無機ジンク、自然さび | 無機ジンクの組み合わせに ついては、個々の基準すべり係数についてこれまで十分なデータがあることから適用可能性は高く、道 示または鉄標に準じてすべり係数の設計値μαを 0.40(粗面状態相当)としてよいと考えられる.

表 3-7-1 は、実際に得られるすべり係数の設計値に対する余裕に関して、 μ_2 (試験値)と μ_a の比(以下、余裕度)をとり、タイプAの各試験体とそれに対応する基準試験体(無機ジンク)で値を比較したものである.比較のために、双方の試験体における余裕度の比も示している.余裕度の算定にあたって、基準試験体(無機ジンク)については道示より $\mu d = 0.45$ 、タイプAについては上記により $\mu d = 0.40$ とした.同表では、タイプAの試験体の余裕度が基準試験体(無機ジンク)の余裕度と同等以上であったことが示されている.これは、ブラスト | 無機ジンクと自然さび | 無機ジンクのタイプAに関して $\mu d = 0.40$ とすれば、道示で設計された無機ジンクの継手と同等あるいはそれよりやや大きな余裕度が期待できることを意味している.

このように、ブラスト | 無機ジンクおよび自然さび | 無機ジンクの組み合わせによるタイプ A の継手に ついては、μd を 0.40 として適用可能であると考えられる.ただし、接触面が粗面系の同種接合面継 手よりボルト軸力の低下が若干大きいため(3-3-2参照),無機ジンクの塗膜厚が過大とならないように するなどの配慮がなされることが望ましいと考えられる.

	ブラスト 無機ジンク	自然さび 無機ジンク		
	本試験	本試験	清水ら ³⁾	
基準試験体(無機ジンク)の余裕度	1.33	1.33	1.30	
タイプAの試験体の余裕度	1.40	1.50	1.49	
余裕度の比	1.05	1.13	1.15	

表 3-7-1 異種接合面継手タイプ A の試験体で得られたすべり係数の設計値に対する余裕度

基準試験体(無機ジンク)における設計すべり係数は0.45とした. タイプAの試験体における設計すべり係数はいずれも0.40とした.

表 3-7-2 異種接合面継手タイプ B の試験体で得られたすべり係数の設計値に対する余裕度

	縦回転式-5	無機ジンク	薬剤さび-無機ジンク			
	本試験	丹波ら ⁵⁾	本試験	本多ら ⁸⁾	吉岡ら ⁹⁾	
基準試験体(無機ジンク)の余裕度	1.33	1.44	1.33	1.62	1.13	
タイプBの試験体の余裕度	1.35	1.41	1.48	1.43	1.32	
余裕度の比	1.01	0.98	1.11	0.89	1.16	
		ブラスト-弁	無機ジンク		自然さび-タ	無機ジンク
	本試験	ブラスト- 4 丹波ら ⁵⁾	無機ジンク 丹波ら ⁶⁾	橋本ら ⁷⁾	自然さび- 4 本試験	無機ジンク 橋本ら ⁷⁾
基準試験体(無機ジンク)の余裕度	本試験 1.37	ブラスト- 4 丹波ら ⁵⁾ 1.44	無機ジンク 丹波ら ⁶⁾ 1.43	橋本ら ⁷⁾ 1.52	自然さび-4 本試験 1.37	無機ジンク 橋本ら ⁷⁾ 1.52
基準試験体(無機ジンク)の余裕度 タイプBの試験体の余裕度	本試験 1.37 1.53	ブラスト-4 丹波ら ⁵⁾ 1.44 1.70	無機ジンク 丹波ら ⁶⁾ 1.43 1.49	橋本ら ⁷⁾ 1.52 1.18	自然さび4 本試験 1.37 1.35	無機ジンク 橋本ら ⁷⁾ 1.52 1.17

基準試験体(無機ジンク)における設計すべり係数は0.45とした. タイプBの試験体における設計すべり係数はいずれも0.40とした.

3-7-2 タイプB

タイプ B の継手は、主に既設構造物において $\mu_d = 0.40$ で設計された既設継手の取替え時における適用が想定される. したがって、 μ_d が 0.40 程度になることをひとつの要件として適用性を検討する.

表 3-7-2 は、タイプ B の試験体とその基準試験体(無機ジンク)に関して、実際に得られたすべり係数の設計値に対する余裕度を比較している. 有機ジンクー無機ジンクとグラインダーー無機ジンクについては、タイプ B の試験体ですべり係数µ2が 0.40 を下回ったため除外して評価している. 同表は、本多ら⁸⁰の薬剤さび-無機ジンク,橋本ら⁷⁰のブラスト-無機ジンクおよびグラインダーー無機ジンク以外においては、タイプ B の試験体の余裕度が基準試験体(無機ジンク)の余裕度と同等以上であったことを示している. 本多ら⁸⁰の結果に関しては、3-4-4 で述べた通り、タイプ B の試験体で他の薬剤さび -無機ジンクとほぼ同等のµ2 = 0.573が得られており、すべり係数自体は高いといえる. 橋本ら⁷⁰の結果ではいずれもタイプ B の試験体の余裕度が低いが、母板の基準すべり係数(ブラスト)も 0.43 と低く耐候性鋼材でもあるため、ブラストや自然さびの接触面状況に起因している可能性がある. なお同表の他のブラストー無機ジンクでは基準試験体(無機ジンク)と同等以上の余裕度が示されている.

このように、縦回転式-無機ジンクと薬剤さび-無機ジンクについては、基準試験体(無機ジンク)

と同等以上の余裕度または 0.57 程度の平均すべり係数が得られている.また、リラクセーション試験 ではこれらのタイプ B の試験体におけるボルト軸力の低下が基準試験体(無機ジンク)以下であったこ とが確認されている(3-5-2 参照).一方、縦回転式や薬品さびの適用に際しては、作業速度、作業姿勢、 作業者の熟練度等の施工条件によってすべり係数が異なる可能性があり、接触面の仕上がりに注意が必 要と考えられる.これらのことから、縦回転式-無機ジンクと薬剤さび-無機ジンクの継手については、 接触面の仕上がりに留意のうえ(表面粗さと膜厚の参考値は**表 3-2-1、表 3-2-2** を参照のこと), 0.40 程度のµaの下で適用してもよいと考えられる.

ブラストー無機ジンクについても、先行研究 ^{5),6)}において 0.60 前後のすべり係数が得られており、本 研究でも同様のすべり係数が得られ、ボルト軸力の低下も基準試験体(無機ジンク)以下であることが 確認されたため、µaを 0.40 程度として適用できると考えられる.ただし、基準すべり係数が 0.40 付近 の試験体ではそれと同等のすべり係数となる場合があることも報告されていることから ⁷⁾、現行の基準 を確実に満たす接触面施工を行い、十分な基準すべり係数の確保したうえで適用する必要がある.

グラインダーー無機ジンクについては,丹波ら 5では 0.50 を超えるすべり係数が得られている一方, 橋本ら 7では約 0.40,丹波ら 6と本研究で 0.30 前後のすべり係数に留まっている.現状では実現される すべり係数が必ずしも明確ではないことから,主部材の接合への適用性は高くないものと考えられる.

有機ジンクー無機ジンク(有機ジンクは高摩擦型でない塗料を使用)については,得られるすべり係数が 0.40 を下回る可能性が明らかとなった.タイプ B の継手のすべり特性を把握したうえで,慎重に適用の検討を行うべきである.自然さびー無機ジンクについても,今後さらに試験データを蓄積する必要があると考えられる.

自然さびー無機ジンクについては、本研究では約 0.55 のすべり係数が得られており、ボルト軸力の 低下も基準試験体(無機ジンク)を上回るものではなかったことから、0.40 程度のµaの下で適用できる と考えられる.ただし、耐候性鋼材の保護性さびを有する母板を使用した橋本らの試験体ではすべり係 数は 0.45 付近であり [¬],本研究の試験体と橋本らの試験体の双方で基準すべり係数µ₂^{low}を大きく下回る すべり係数が示されているため、試験データをさらに蓄積する必要があると考えられる.

3-8 まとめ

本研究では、仕様の異なる接触面を含む高力ボルト摩擦接合継手(異種接合面継手)の適用性を明確 にすることを目的に、タイプ A とタイプ B の双方の試験体を対象としたリラクセーション試験とすべ り耐力試験を行い、ボルト軸力の低下挙動や軸力低下の支配因子、すべり挙動等の評価を行った.そし て、先行研究の結果も引用して、適用可能性の高い継手について設計すべり係数を接触面の組み合わせ ごとに検討した.本研究の結論は、次の通りである.

- タイプ A の継手に関して、ブラスト | 無機ジンクおよび自然さび | 無機ジンクの組み合わせであれ ばµaを 0.40 として適用可能であると考えられる.ただし、接触面が粗面系の同種接合面継手よりボ ルト軸力の低下が若干大きいため、無機ジンクの塗膜厚が過大とならないようにするなどの配慮がな されることが望ましいと考えられる.
- タイプ B の継手に関して、縦回転式-無機ジンク、薬剤さび-無機ジンク、ブラスト-無機ジンクの組み合わせであれば、µaを0.40程度として適用可能であると考えられる.ただし、接触面の仕上がりは本研究の試験体と同等であることを前提としており、とくに施工条件のばらつき等が想定され

る縦回転式と薬品さびでは品質の確保が重要である.

自然さび-無機ジンクの組み合わせの場合も、µdを 0.40 程度として適用可能であると考えられる.
 ただし、耐候性鋼材の保護性さびを有する母板を使用した試験体で 0.45 付近のすべり係数が示されたとの報告 かもあり、試験データをさらに蓄積する必要があると考えられる.

本研究では標準的と考えられる仕上がりを目標として接触面を施工したが,施工条件の違いによって すべり係数がある程度ばらつくことも想定される.したがって,異種接合面継手全般に関して今後もさ らにデータが蓄積されていくことが望ましいと考えられる.

謝辞:極東メタリコン工業(株)の小寺健史氏には,縦回転式動力工具による施工においてご協力を賜った.ここに記して各位に心より感謝申し上げます.

参考文献

1) 土木学会:鋼構造シリーズ15 高力ボルト摩擦接合継手の設計・施工・維持管理指針(案), 2006.

2) 清水織恵,石崎雄一:仕様の異なる摩擦接合面の継手性能に関する試験報告,土木学会第67回年次 学術講演会,I-340, 2012.

3) 南邦明, 斉藤雅充, 横山秀喜, 杉本一朗, 能島隆男, 増永寿彦, 長崎英二: 亜鉛アルミ擬合金溶射 を施した高力ボルト摩擦接合継手に関する研究, 土木学会論文集 A1, Vol. 68, No. 2, pp. 429-439, 2012.

4) 丹波寛夫,木村聡,杉山裕樹,山口隆司:無機ジンクリッチペイント面とそれと異なる接合面処理 がなされた高力ボルト摩擦接合継手のすべり耐力試験,構造工学論文集,Vol. 58, pp. 803-813, 2012.
5) 丹波寛夫,行藤晋也,木村聡,山口隆司,杉浦邦征:接合面が鋼材粗面と無機ジンクリッチペイン ト面の高力ボルト摩擦接合継手のすべり係数の提案,土木学会論文集 A1, Vol. 70, No. 1, pp. 137-149, 2014.

6)橋本国太郎,山口隆司,鈴木克弥,石原一伸,杉浦邦征:経年無塗装耐候性鋼材を用いた異種接合 面を有する高力ボルト摩擦接合継手のすべり係数に関する実験的研究,構造工学論文集, Vol. 60A, pp. 632-641, 2014.

7)本多克行,山口隆司,橘肇,吉岡夏樹,齊藤史朗,中村定明:既設構造物の高力ボルト摩擦接合継
手接合面への改良した錆促進剤の適用に関する検討,構造工学論文集,Vol. 64A, pp. 491-502, 2018.
8)吉岡夏樹,橘肇,岡田幸児:錆促進剤塗布後の曝露期間に着目した高力ボルト摩擦接合継手のすべり試験,駒井ハルテック技報,Vol. 8, pp. 39-46, 2019.

9) 土木学会:高力ボルト摩擦接合継手の設計・施工・維持管理指針(案),2006.

10) 日本建築学会:鋼構造接合部設計指針, 2012.

11) 南邦明,田村洋,吉岡夏樹,内田大介,茂呂充,安藤光希:高力ボルト継手における摩擦面の数に応じた導入ボルト軸力に関する検討,土木学会論文集 A1, Vol. 75, No. 1, pp. 46-57, 2019.
12) 南邦明,森猛,杉谷隆夫:土木学会第 59 回年次学術講演会, I-587, 2004.

第3章 付録1 表面粗さ評価値に及ぼす評価長さの影響

JIS B0633:2001¹⁾では、非周期的な粗さ曲線をもつ計測対象面に対して、推定される粗さパラメータ R_a に応じて異なる評価長さを採用し表面粗さを計測することとしている。例えば、推定される R_a が 0.1 μ m< $R_a \leq 2\mu$ m の場合は評価長さを 4mm、2 μ m< $R_a \leq 10\mu$ m の場合は評価長さを 12.5mm としている。 ボルト継手の接触面で計測される R_a は後者の範囲に含まれる場合が多いと考えられるが、接触式の粗さ 計を用いる場合、評価長さ 4mm での計測時間は同 12.5mm に対して約 1/3 に縮減される。そこで、本研 究の試験体における6種類の接触面について評価長さを 12.5mm とした計測と 4mm とした計測をそれぞ れ実施し、接触面の粗度を評価する際の評価長さの影響を検討することとした。

計測箇所は,固定側母板の非接触部(付図 3-1-1)とし,各試験体について長手方向にそれぞれの評価長さで5回ずつ計測した.計測には表面粗さ計(サーフテスト SJ-210)を用い,接触式計測であるため位置をずらしながら計測し, *R*_aと *R*_{zJIS}の3体平均(15データの平均値)を比較することで評価長さの影響を検討した.なお,ノイズ除去のために計測結果では Gaussian フィルター¹⁴⁾が使用されている.

計測結果は**付表 3-1-1** に示す通りであった.この結果に基づいて異なる評価長さを用いた計測結果の 相関を示したものが**付図 3-1-2** である.同図は、15 データの平均値で比較すれば、*R*_a と *R*_{zJIS} のどちら のパラメータにおいても、両者の間に高い相関が顕れることを示している.

付図 3-1-1 固定側母板の非接触部における表面粗さ計測箇所

粗さパラメータ		R _a		R _{zJIS}	
評価長さ		12.5mm	4mm	12.5mm	4mm
	A-b(ブラスト)	10.83	8.1	48.0	29.7
	A-b (無機ジンク)	7.75	5.01	31.7	18.3
	A-n (自然さび)	8.16	5.84	32.5	21.1
	A-n (無機ジンク)	7.99	6.13	33.8	22.4
	B-v	8.70	6.70	37.7	25.0
*	B-o	4.26	1.81	15.20	6.8
灏	B-a	7.61	5.04	30.6	18.2
19 19	C-b	13.8	11.1	56.3	38.9
	C-v	5.53	3.8	22.1	15.5
	C-i	8.36	6.3	34.5	22.4
	C-o	4.32	2.1	15.88	8.1
	C-n	9.02	6.78	35.5	23.7
	C-a	7.02	5.39	28.1	19.7

付表 3-1-1 固定側母板の非接触部における表面粗さ計測結果

付図 3-1-3 表面粗さの計測値の3体平均における変動係数

試験体名	平均值 [μm]	変動係数	試験体名	平均值 [μm]	変動係数
A-b-1(ブラスト)	15.8	0.0612	A-b-1(無機ジンク)	7.48	0.0527
A-b-2(ブラスト)	8.21	0.112	A-b-2(無機ジンク)	8.50	0.0667
A-b-3(ブラスト)	8.48	0.140	A-b-3(無機ジンク)	7.27	0.0933
C-b-1	13.8	0.0445	C-i-1	8.33	0.0822
C-b-2	14.0	0.0704	C-i-2	8.53	0.0313
C-b-3	13.6	0.0531	C-i-3	8.20	0.0712
変動係数	0.235	-	変動係数	0.0616	-

付表 3-1-2 各試験体に関する平均値と各計測値の変動係数(n = 5)

付図 3-1-3 は、それぞれの評価長さの場合について 3 体平均の変動係数を示している.まず *R*_a に関し てみると、いずれの評価長さの場合も縦回転式と有機ジンクの接触面において高い変動係数をとる傾向 が示されており、これらの接触面において粗度のばらつきが大きいことがうかがえる.ブラストについ ては変動係数が試験体 C-b で小さいものは試験体 A-b では高い値が示されている.

その理由を検討するため,評価長さ12.5mmで計測した場合の*R*aについて,各試験体に関する平均値の 変動係数および各計測値の変動係数を比較したものが付表 3-1-2 である.同表には参考として無機ジ ンクの接触面に対する計測の変動係数も示している.これより,ブラストでは接触面ごとの粗度のばらつきが大きく,付図 3-1-3 に示された試験体 C-b と A-b の変動係数の違いはその影響によるものと考えられる.

付図 3-1-3 における R_aの変動係数に関して, 評価長さの違いの影響についてみてみると, 評価長さが 4mm のほうが高い変動係数を示す傾向が認められるものの, 評価長さ 12.5mm による計測の変動係数が 0.15 以上のもので, 評価長さを 4mm とした計測の変動係数より 1.5 倍以上高い値を示すものはなかった.

つぎに、付図 3-1-3 において R_{2JIS} の変動係数についてみると、 R_a と同様に縦回転式と有機ジンクに関して高い変動係数をとる傾向が示されており、ブラストに関しても R_a と同様の傾向となっている.評価長さの違いの影響についてみてみると、全体として R_a の場合よりも評価長さの違いの影響が大きく顕れている.これは、 R_a が評価長さに含まれるすべての計測点高さを平均化したパラメータであるのに対し、 R_{2JIS} が評価長さにおいて高さに関する上位 10 位までの計測点高さを平均化したパラメータであるためと考えられる. 試験体 C-v では評価長さ 4mm の場合の計測結果において変動係数が 0.4 を超えており、ブラシに因る微細な傷が点在した縦回転式特有の接触面性状(図 3-4-3、図 3-4-4 参照)に因り評価長さの影響が特に強く顕れている可能性がある.しかしながら、試験体 C-v を除けば、 R_a と同様に、評価長さ 12.5mm による計測の変動係数が 0.15 以上のもので、評価長さを 4mm とした計測の変動係数より 1.5 倍以上高い値を示すものはなかった.

以上から、本研究では十分なデータ数の平均値を用いることを前提として、ボルト評価長さを 4mm として $R_a \ge R_{zJIS}$ の計測を行うこととした.

第3章 付録1 参考文献

1) 日本工業標準調査会: JIS0633: 2001 製品の幾何特性仕様 (GPS) -表面性状:輪郭曲線方式-表面性状評価の方式 及び手順, 2001.

第3章 付録2 すべり耐力試験データ(シリーズI)

付図 3-2-1 試験体 A-b-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-2 試験体 A-b-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-3 試験体 A-b-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-4 試験体 A-n-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-5 試験体 A-n-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-6 試験体 A-n-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-7 試験体 B-v-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-8 試験体 B-v-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-9 試験体 B-v-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-10 試験体 B-o-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-11 試験体 B-o-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-12 試験体 B-o-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-13 試験体 B-a-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-14 試験体 B-a-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-15 試験体 B-a-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-16 試験体 C-b-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-17 試験体 C-b-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-18 試験体 C-b-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-19 試験体 C-v-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-20 試験体 C-v-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-21 試験体 C-v-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-22 試験体 C-i-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-23 試験体 C-i-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-24 試験体 C-i-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-25 試験体 C-o-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-26 試験体 C-o-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-27 試験体 C-o-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-28 試験体 C-n-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-29 試験体 C-n-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-30 試験体 C-n-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-31 試験体 C-a-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-32 試験体 C-a-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-2-33 試験体 C-a-3 すべり面の状況(左:ボルト側,右:ナット側)

第3章 付録3 すべり耐力試験データ(シリーズII)

付図 3-3-1 試験体 B-b2-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-2 試験体 B-b2-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-3 試験体 B-b2-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-4 試験体 B-g-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-5 試験体 B-g-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-6 試験体 B-g-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-7 試験体 B-n2-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-8 試験体 B-n2-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-9 試験体 B-n2-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-10 試験体 C-b2-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-11 試験体 C-b2-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-12 試験体 C-b2-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-13 試験体 C-g-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-14 試験体 C-g-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-15 試験体 C-g-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-16 試験体 C-i2-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-17 試験体 C-i2-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-18 試験体 C-i2-3 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-19 試験体 C-n2-1 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-20 試験体 C-n2-2 すべり面の状況(左:ボルト側,右:ナット側)

付図 3-3-21 試験体 C-n2-3 すべり面の状況(左:ボルト側,右:ナット側)

第3章 付録4 荷重-母板ひずみデータ

付図 3-4-1 異種接合面継手の実験データ (シリーズ])

付図 3-4-2 同種接合面継手の実験データ (シリーズ I)

付図 3-4-3 異種接合面継手の実験データ (シリーズ II)

付図 3-4-4 同種接合面継手の実験データ (シリーズ II)

Ⅳ. ボルト試験方法に関する検討WG

ボルト試験方法に関する検討

ボルト試験方法に関する検討WGメンバー

部会長

南 邦明 鉄道建設·運輸施設整備支援機構

ボルト試験方法に関する検討WG 目次

1. はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV −1−	1
参考文献 · · · · · · · · · · · · · · · · · · ·	IV −1−	2
り キャリブレーション試験方法の検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	π7-2-	1
2. (()) レ) コン (()) () () () () () () () () () () ()	₩-2-	1
2 - 1%㎜ 2-2 キャリブレーション試験 - ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	TV 2 TV-2-	1
	TV 2 TV-2-	1
	π7_2_	י 2
	π7_2_	2
	TV 2 TV-2-	ے ع
224 武家1の武家市未 2-3 キャリブレーション討論	π7_2_	5
	π7_2_	5
	π7_2_	5
2.5.2 武歌 II の武歌相未 2-1 キャリブレーション試験の統計調査 · · · · · · · · · · · · · · · · · · ·	π7_2_	6
	π7_2_	6
2 平 1 测且1%安 9_/_9 润本結里	π7_2_	6
2 + 2 調査相末 2-5 キャリブレーション試験の考察と改自提家	π7_2_	12
	TV 2 TV-2-	12
20 帕朗 余老文献	π7_2_	11
	10 2	17
 リラクセーション試験方法に関する検討	IV-3-	1
3−1 概論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	1
3-2 試験体の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	1
3-2-1 試験体の使用材料, 形状および種類・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	1
3-2-2 摩擦面処理 ······	IV-3-	3
3−2−3 膜厚の測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	3
3−2−4 ボルトの締付け・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	4
3-3 リラクセーション試験方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	4
3-3-1 キャリブレーション試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	4
3-3-2 リラクセーション試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	5
3-4 リラクセーション試験結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	5
3-4-1 試験Ⅰの試験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	5
3−4−2 試験Ⅱの試験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	8
3−4−3 試験 III の試験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	9
3-5 既存データも含めた初期値の影響の分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	11

	3−5−2 初期値の違いによる 672 時間後の軸力残存率の差・・・・・・・・・・・・・	IV-3-	12
	3-5-3 摩擦面の違いによる残存率差が及ぼす影響度・・・・・・・・・・・・・・・・・	IV-3-	13
	3-5-4 軸力導入時のボルト軸力と軸力残存率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	14
	3-5-5 初期値の設定の違いによるばらつきの影響・・・・・・・・・・・・・・・・・・・・・	· IV-3-	14
	3-6 リラクセーション試験の初期値のあり方	· IV-3-	15
	3-6-1 初期値の設定が試験結果に及ぼす影響の考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-3-	15
	3-6-2 リラクセーション試験の初期値のあり方の考察・・・・・・・・・・・・・・・	IV-3-	17
	3-7 結論	IV-3-	17
	参考文献 · · · · · · · · · · · · · · · · · · ·	IV-3-	18
4.	. 変位量のよるすべり判定値の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-4-	1
	4-1 概論	· IV-4-	1
	4-2 試験体の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· IV-4-	1
	4-2-1 試験体の使用材料, 形状および種類・・・・・・・・・・・・・・・・・・・・・・・・・	· IV-4-	1
	4-2-2 ボルト締付け・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· IV-4-	2
	4-2-3 摩擦面処理および粗さ・膜厚・錆厚の測定 ·····	IV-4-	2
	4-3 すべり耐力試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-4-	3
	4-3-1 ボルト軸力の計測・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· IV-4-	3
	4-3-2 すべり耐力試験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· IV-4-	4
	4-3-3 ボルト軸力計測結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· IV-4-	4
	4-3-4 すべり係数算出結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· IV-4-	5
	4-3-5 すべり時の変位量の計測結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-4-	5
	4-4 すべり時の変位量の考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-4-	6
	4-4-1 No.1 ボルト(内側ボルト)位置での変位量	IV-4-	6
	4-4-2 母板間(すべり側と固定側の母板)での変位量····································	IV-4-	9
	4-5 結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IV-4-	11
	4-6 おわりに·····	IV-4-	11
	参考文献	· IV-4-	12

1. はじめに

鋼橋の現場接合において,昭和40年以前はリベット接合が主流であったが,昭和40年代に入り徐々 にボルト接合が適用され始めた.現在では,溶接接合を適用する場合もあるが,ボルト接合は,工期が 短く,作業性もよく,さらに品質管理も容易など,施工性に優れている.これらの理由もあり,現在で は,ボルト接合が現場接合の主流になっている.ボルト接合を適用する場合,一般に高力ボルト摩擦接 合継手を用いている.

道路橋示方書では昭和48年,鉄道の建造物設計標準では昭和45年にボルトに関する基準が示された. 現在の道路橋示方書¹⁾(以下,道示)および鉄道構造物等設計標準²⁾(以下,鉄道標準)において,高 カボルト摩擦接合継手(以下,ボルト継手)を用いる場合,摩擦面は,黒皮を除去した粗面状態(以下, 粗面状態)および厚膜型無機ジンクリッチペイント(以下,無機ジンク)を塗布した状態を基本として いる.このため,それ以外の摩擦面を用いる場合には,ボルト試験を実施してからその適用を検討して おり,これまで数多くのボルト試験が行われてきた.

ボルト試験では、導入軸力試験、リラクセーション試験あるいはすべり耐力試験が実施されるが、これらの試験方法の詳細に明確な規定はなく、試験実施者の判断で行われているのが現状である.

そこで,WG4 では,WG2 および WG3 で実施した試験データおよび既往のデータを用いて,ボルト 試験に関して明確にされていない試験条件を検討することとした.具体的には,以下の3テーマである.

(WG4 のテーマ)

- ・キャリブレーション試験方法の検討(第2章)
- ・リラクセーション試験方法に関する検討(第3章)
- ・変位量のよるすべり判定値の検討(第4章)

第2章で検討するキャリブレーション試験に関して、リラクセーション試験やすべり耐力試験を行う ときに、ボルト軸力の計測を行うが、その際、事前にボルトにひずみゲージを貼付けた上でボルトに荷 重を与え、荷重とひずみの関係を調べるキャリブレーション試験を実施し、ボルト軸力算出に用いる換 算率を求める.そして、計測したひずみに換算率を乗じボルト軸力を算出するが、キャリブレーション 試験方法が換算率に及ぼす影響やその特性は明確ではなかった.本研究は、換算率に及ぼす影響因子を 明確にし、試験方法の改良案を示すことを目的とした実験研究および調査研究である.本実験では、キャ リブレーション試験を行い、換算率に及ぼす影響因子を既往のデータも含め検証した.これらの結果か ら、キャリブレーション試験の改良提案を行い、換算率の適用の留意点を示した.

第3章で検討するリラクセーション試験は、ボルト締付け後からある設定した期間内(例えば1ヶ月) における軸力低下を調べる試験である.試験の実施において、試験開始時を締付け直後とする場合や、 締付け直後から30秒後等、ある程度時間を置く場合もあり、初期値の定義は明確にされていなかった. リラクセーションによるボルト軸力の低下は、締付け直後が大きいことは知られているが、これまで初 期値の設定方法が、試験結果に及ぼす影響を定量的に評価されていなかった.本研究は、リラクセーショ ン試験における初期値の影響を明確にすることを目的に行った実験的研究である.本研究では、リラク セーション試験を行い、締付け直後から30秒間のボルト軸力低下の影響が試験結果に及ぼす影響を明 確にし、リラクセーション試験における初期値のあり方を示した.

第4章で検討する変位量のよるすべり判定値の検討に関して,高力ボルト摩擦接合継手のすべり耐力 試験では、すべりの判定は、すべった時に荷重が下がり変位が大きくなった時としている.ただし、荷 重の低下がほとんどなく変位が大きくなるケースでは、近年、建築鉄骨の基準³⁾で示されている変位量 0.2mm に達した時の荷重値をすべりと判定する場合がある.ただし、建築分野では摩擦面は赤錆面であ り、これまで摩擦面の違いによるすべり時の変位量については明確にされてこなかった.本研究は、摩 擦面に応じた変位量によるすべり判断の目安値を提案することを目的に行った実験的研究である.本実 験では、無機ジンクリッチペイントやブラスト等、異なる5タイプの摩擦面を有する高力ボルト継手を 用いてすべり耐力試験を実施し、すべり時の変位を計測した.また、既往の研究におけるすべり時の変 位量も調べた上で、摩擦面に応じた変位量によるすべり判断の目安値を提案した.

参考文献

- 1) 日本道路協会:道路橋示方書·同解説-II 鋼橋·鋼部材編, 2017.11.
- 2) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説(鋼·合成構造物), 2009.7.
- 3) 日本建築学会:鋼構造接合部設計指針, 2012.3.

2. キャリブレーション試験方法の検討

2-1 概論

鋼橋の架設現場における部材の接合では、一般にボルト接合を適用しており、高力ボルト継手の試験 もこれまで数多く行われてきた.高力ボルト摩擦接合継手のボルト試験においては、リラクセーション 試験やすべり耐力試験が実施されるが、試験方法の詳細に明確な規定はなく、実施者の判断で行われて いるのも事実である.その1つにキャリブレーション試験がある.

リラクセーション試験やすべり耐力試験では、ボルト軸力の計測を行うが、その際、計測したひずみ に鋼のヤング係数を乗じることでボルト軸力は算出でき、この方法を用いることもある.しかしながら、 ボルト材料のヤング係数のばらつきやボルト径の寸法公差も生じることもある.このため、ボルトにひ ずみゲージを貼付けた上で引張荷重を与え、荷重とひずみの関係から換算率を求めるキャリブレーショ ン試験を一般に実施している.この試験状況は図 2-1-1 に示すように、ボルトを専用冶具にセットし、 荷重を載荷させて行っている.一般にボルト製造会社で行うケースが多いが、大学等の研究機関で行う こともある.ただし、キャリブレーション試験方法が換算率に及ぼす影響やその特性は明確でなかった. 本研究は、換算率に及ぼす影響因子を明確にし、試験方法の改良案を示すことを目的とした実験研究お よび調査研究である.本実験では、キャリブレーション試験を行い、換算率に及ぼす影響因子を既往の データも含め検証した.これらの結果から、キャリブレーション試験の改良提案を行い、換算率の適用 の留意点を示した.

図 2-1-1 キャリブレーション試験の一例

2-2 キャリブレーション試験 1

2-2-1 使用ボルト

本試験で使用する高力ボルトの材料特性を表 2-2-1 に示す.使用ボルトは、本節で示す試験 I では六角ボルト F10T(M22)のボルト長 85mm と 90mm を使用し、次章で述べる試験 II では F10TW(M22)のボルト長 75mm のボルトを用いた.

		ボルト								
ا بر لال		4号試験	険片		製	E E	製品	製品	トルク	ラート 底公
径・長さ・規格	降伏 強度 (N/mm ²)	引張 強度 (N/mm ²)	伸び (%)	絞り (%)	引張 荷重 (^{kN})	硬さ (HRC)	硬さ (HRC)	硬さ (HRC)	係数値 (平均値)	訊 歌 番号
M22×85(F10T)	1019	1074	19	69	332	32	25	40	0.131	⇒₽₽₽₽I
M22×90(F10T)	1008	1062	18	69	328	32	26	38	0.135	武源 1
M22×75(F10TW)	995	1058	20	67	320	32	26	38	0.132	試験II

表 2-2-1 使用ボルトの機械的性質とトルク係数値

2-2-2 試験 Iの試験方法

試験 I は, 表 2-2-1 で示した 2 種類のボルトを対象とし, それぞれ 3 本, 合わせて 6 本のボルトを用いて実施した. 試験は, 図 2-2-1 に示すように, ボルト軸部に 2 枚のひずみゲージを取り付け, ボルト頭部とナット部を専用治具にセットし引張荷重を与え, 荷重ごとにひずみを計測した. 試験はボルト製造会社 A 社で実施した.

図 2-2-1 ひずみゲージの取り付け

2-2-3 試験 I で用いるボルト径の計測

換算率は、一般に3本のボルトの平均値を用いている.これは、同じボルト内(同じ線材)において も、換算率にばらつきが生じるからである.その1つの要因にボルト径の寸法公差が考えられる.そこ で、製造ロットおよび製造番号が同じボルトに対し、ボルト径の計測をデジタルノギス計(0.01mm)を用 いて行った.

計測は, M22×85 で 130 本, M22×90 では 110 本のボルト径を対象に行った. 計測箇所はボルト頭から 5mm 離れた軸部, ナット側ねじ部から 5mm 離れた軸部, およびその中央部の 3 ヶ所とし, 1 ヶ所につきそれぞれ 2 回(十字の方向に), 合わせて 1440 ヵ所を計測した.

計測結果を表 2-2-2 および図 2-2-2 に示す. これらの結果に示すように,ボルト径は部位によって若 干異なり,両ボルトともに,ボルト頭側>ナット側>中央部となった.また,全箇所の平均値は,M22 ×85 で 21.69mm, M22×90 では 21.77mm であり,ボルト軸力の計測を行う中央部では前者で 21.65mm, 後者では 21.74mm であった. 次項の 2-2-4 では,これらの結果を用い,標準ボルト径 22mm に対しマイ ナス側の径が換算率に及ぼす影響を考察する.

	表 2-2	2–2	ボル	ト径計	測結	果の身	制	(<u>}</u>	单位:mm)
		M22	2×85			M22	2×90		
	頭側	中央部	ナット側	平均	頭側	中央部	ナット側	平均	
LA Lt	01 50	A1 (F	A 1 (A	A 1 (A	01 00	01 51	A1 E(01 55	

		11122	2~05			11122	2~90	
	頭側	中央部	ナット側	平均	頭側	中央部	ナット側	平均
平均値	21.72	21.65	21.69	21.69	21.80	21.74	21.76	21.77
漂準偏差	0.0668	0.0508	0.0522	0.0639	0.0827	0.0919	0.0926	0.0924
最小値	21.53	21.52	21.54	1	21.52	21.52	21.52	1
最大値	21.89	21.82	21.85	-	21.97	21.96	21.94	-

2-2-4 試験 Iの試験結果

a) 換算率

表 2-2-3,表 2-2-4 にそれぞれ M22×85 および M22×90 の試験結果を示す.ここで示す換算率は,荷 重をひずみで除して求めた値であり,ここでは各ボルトの算出結果とその平均値を示している.ここで 示す全てのボルト,全ての荷重域での換算率の平均値(36 データ)がボルト軸力計測で用いる換算率 (M22×85:0.07415, M22×90:0.07447)であり,これに計測したひずみを乗じればボルト軸力が算出 される.また,図 2-2-3 はこれらの結果を図示したものであり,この直線の傾きが換算率を示している.

これらの結果に示すように、製造ロットが同じボルトであっても、換算率はボルト No.1, 2, 3 によっても若干異なっていることが判る.また、荷重値によっても異なっており、いずれのボルトにおいても、荷重が小さければ換算率が高くなる結果であった.図2-2-4 は荷重と換算率の関係を示したものである. 必ずしも直線分布であるとは言えないが、右肩下りの傾向は明確であった.また、荷重値が最も小さい 50kN のデータはばらつきが大きいように思われ、さらに、各ボルトの標準偏差にも違いが見られた.

b) ヤング係数比

鋼のヤング係数(205,000N/mm²)および標準ボルト径(22mm)で求めた換算率(以下,ヤング係数算定値) は,0.07793(M24の場合0.09274)となる.ここでは計測して求めた換算率をヤング係数算定値で除し た求めた比率をヤング係数比と称し,表 2-2-3,表 2-2-4 ではこれらの算出結果も示している.ここで示 すヤング係数比が100%より低い場合,ボルトのヤング係数が鋼のヤング係数より低いことを示している.

表 2-2-3,表 2-2-4 に示すヤング係数比の平均値は、それぞれ 95.15%、95.56%であり、その場合のヤング係数は 195,058N/mm²、195,898N/mm²となり(標準ボルト径と仮定)、両者ともに鋼のヤング係数よりも低くなった.ただし、同じボルトであってもばらつきが生じており、例えば、表 2-2-4 に示す M22×90 では 2.98%(97.35-94.37)の違いが生じており、言い換えると両ボルトでは約 3%のヤング係数の違いが生じる結果となる.ただし、同じ製造ロットでは同じ線材を使用しており使用材料の影響は考え難く、この差は計測誤差あるいはボルト径の寸法公差等と考えるのが妥当である.

表 2-2-3 M22×85の荷重-ひずみ関係 と換算率算出結果(試験 I)

表 2-2-4 M22×90の荷重-ひずみ関係 と換算率算出結果(試験 I)

			-					· · · · · · · · · · · · · · · · · · ·										
荷重		ひず	み(μ)		ł	奐算率(荷	重/ひずみ	⊁)		荷重		ひず	み(μ)		1	奐算率(荷	重/ひずみ	(۲
(kN)	No.1	No.2	No.3	平均	No.1	No.2	No.3	平均		(kN)	No.1	No.2	No.3	平均	No.1	No.2	No.3	平均
50	680	665	660	668	0.07353	0.07519	0.07576	0.07481		50	670	640	670	660	0.07463	0.07813	0.07463	0.07576
100	1355	1340	1335	1343	0.07380	0.07463	0.07491	0.07444		100	1340	1300	1350	1330	0.07463	0.07692	0.07407	0.07519
120	1625	1610	1605	1613	0.07385	0.07453	0.07477	0.07438		120	1615	1565	1625	1602	0.07430	0.07668	0.07385	0.07492
140	1895	1875	1875	1882	0.07388	0.07467	0.07467	0.07440		140	1880	1830	1900	1870	0.07447	0.07650	0.07368	0.07487
160	2165	2145	2145	2152	0.07390	0.07459	0.07459	0.07436		160	2155	2105	2175	2145	0.07425	0.07601	0.07356	0.07459
180	2440	2415	2420	2425	0.07377	0.07453	0.07438	0.07423		180	2430	2375	2445	2417	0.07407	0.07579	0.07362	0.07448
200	2715	2690	2690	2698	0.07366	0.07435	0.07435	0.07412		200	2700	2640	2720	2687	0.07407	0.07576	0.07353	0.07444
220	2990	2960	2960	2970	0.07358	0.07432	0.07432	0.07407		220	2980	2915	2995	2963	0.07383	0.07547	0.07346	0.07424
240	3265	3240	3240	3248	0.07351	0.07407	0.07407	0.07388		240	3255	3190	3275	3240	0.07373	0.07524	0.07328	0.07407
260	3545	3515	3515	3525	0.07334	0.07397	0.07397	0.07376		260	3530	3465	3560	3518	0.07365	0.07504	0.07303	0.07390
280	3820	3790	3790	3800	0.07330	0.07388	0.07388	0.07368		280	3810	3755	3840	3802	0.07349	0.07457	0.07292	0.07365
300	4095	4070	4060	4075	0.07326	0.07371	0.07389	0.07362		300	4090	4040	4120	4083	0.07335	0.07426	0.07282	0.07347
A.平均	匀換算≅	轁			0.07361	0.07437	0.07446	0.07415		A.平均	໑換算≅				0.07404	0.07586	0.07354	0.07447
B.標準	「偏差				0.00023	0.00041	0.00053	0.00055*	1	B.標準	嶇偏差				0.00043	0.00108	0.00051	0.00124
C.ヤン	グ係数	忠(%)			94.47	95.44	95.55	95.15		C.ヤン	グ係数	比(%)			95.01	97.35	94.37	95.56
D.ヤン	⁄グ係数	b比のM	lax-Mi	n(%)	0.83	1.90	2.41	1.09**]	D.ヤン	グ係数	比のM	ax-Mir	n(%)	1.64	4.96	2.32	2.98*
										/		(

**:3本のボルト間でのヤング係数比(2.05×10⁶で算出した場合との比率)の最大値と最小値との差 *: 全データ(36)での標準偏差.

c) ボルト径の影響の考察

2-2-4 b) で示したように,標準ボルト径で計算したヤング係数比は,M22×85 で 95.15%,M22×90 では 95.56% であった. これらを前項の 2-2-3 で示したボルト径の計測結果の平均値(表 2-2-2) で計算 すると、それぞれ 98.25%、 97.86%となり、前者で 3.10%、後者で 2.30%の違いが生じ、ボルト径の寸法 公差の影響が生じる結果となった.

次に、中央部における最大値と最小値の差は、M22×85 で 0.30mm(21.82-21.52)、M22×90 では 0.44mm (21.96-21.52)であり、同じ製造ロットであっても差異が生じていた.同様にこれらの結果が換算率に及 ぼす影響は前者で 2.81%,後者では 3.96%の違いが生じるものと考えられ、ボルト径の寸法公差による 換算率の違いも生じると考えられる.

2-3 キャリブレーション試験 ||

2-3-1 試験 II の試験方法

試験Ⅱは,表2-2-1で示したM22×75を対象とし,3本のボルトを用いて前節と同様に試験を行った. さらにNo.3ボルトでは塑性域に入らない荷重の範囲で3回繰り返してひずみ計測を行い,3回目は通常 行っている塑性域に達する荷重(300kN)まで載荷した.これは,3本のボルトでの換算率の差異の要因に, 載荷等による試験上(計測上)の誤差も考えられるため,同じボルトで3回行うことにより,その影響 を確認することとした.その他の基本的な試験方法は試験Ⅰと同じであるが,試験Ⅰと異なるボルト製 造会社 B 社で実施し,計測する荷重レベルや荷重の分割数は異なっている.

2-3-2 試験 II の試験結果

a) 換算率

表 2-3-1 に試験 II の結果を示す. これらの結果に示すように, 試験 I と同様, 製造ロットが同じボル トであっても, 換算率はボルト No.1, 2, 3 によって異なっていた. また, 荷重値によっても換算率は異 なっており, 荷重が小さければ換算率が高く, これについても No.1 ボルトを除けば, 試験 I と同様の結 果であった. 図 2-3-1(a)は荷重と換算率の関係を示すが, 平均値の分布で判断しても曲線的な分布であ り明確な傾向は見られないが, 200kN 以上のデータのみで判断すれば, 図 2-2-4 と同様右肩下りの傾向 を示した. 明確な傾向は見られなかった要因は, No.1 ボルトの 50kN, 100kN がその他の計測結果と大き な違いがあり, その影響が生じた結果と考えられる.

表 2-3-1 M22×75の荷重-ひずみ関係 と換算率算出結果(試験 II)

荷重		ひず	み(μ)		ł	奐算率(荷	重/ひずみ	r)
(kN)	No.1	No.2	No.3	平均	No.1	No.2	No.3	平均
50	657	633	628	639	0.07610	0.07899	0.07962	0.07821
100	1298	1266	1255	1273	0.07704	0.07899	0.07968	0.07855
150	1935	1895	1882	1904	0.07752	0.07916	0.07970	0.07878
180	2318	2274	2260	2284	0.07765	0.07916	0.07965	0.07881
200	2576	2514	2516	2535	0.07764	0.07955	0.07949	0.07889
220	2833	2768	2769	2790	0.07766	0.07948	0.07945	0.07885
240	3092	3027	3026	3048	0.07762	0.07929	0.07931	0.07873
260	3350	3283	3280	3304	0.07761	0.07920	0.07927	0.07868
280	3613	3542	3520	3558	0.07750	0.07905	0.07955	0.07869
300	3874	3804	3784	3821	0.07744	0.07886	0.07928	0.07852
A.平均	൭換算፯	赵			0.07738	0.07917	0.07950	0.07867
B.標準	編差				0.00048	0.00022	0.00017	0.00100*
C.ヤン	グ係数	:比(%)			99.30	101.60	102.02	100.96
D.ヤン	グ係数	比のM	[ax-Mi	n(%)	1.99	0.89	0.56	2.72**

表 2-3-2 No.3 ボルトでの3回繰り返し載荷 での換算率算出結果

r								
荷重		ひず	み(μ)		ŧ	與算率(荷	重/ひずみ	r)
(kN)	1回目	2回目	3回目	平均	1回目	2回目	3回目	平均
50	627	626	628	627	0.07974	0.07987	0.07962	0.07974
100	1257	1253	1255	1255	0.07955	0.07981	0.07968	0.07968
150	1887	1878	1882	1882	0.07949	0.07987	0.07970	0.07969
180	2263	2258	2260	2260	0.07954	0.07972	0.07965	0.07963
200	2518	2510	2516	2515	0.07943	0.07968	0.07949	0.07953
220	2771	2767	2769	2769	0.07939	0.07951	0.07945	0.07945
240	3024	3014	3026	3021	0.07937	0.07963	0.07931	0.07944
A.平均	匀換算ጃ	鞀			0.07950	0.07973	0.07956	0.07960
B.標準	「偏差				0.00013	0.00013	0.00014	0.00016*
C.ヤン	グ係数	(光)			102.02	102.31	102.09	102.14
D.ヤン	⁄グ係数	k比のΜ	[ax-Mi	n(%)	0.49	0.47	0.50	0.29**
D.ヤン	/グ係数	比のM	ax-Mi	n(%)	0.49	0.47	0.50	0.29**

注) 表 2-3-2 のデータは表 2-3-1 の No.3 ボルトの試験時におい て塑性域に入らない荷重範囲で3回載荷して算出した換算率.

*:全データでの標準偏差. **:3本のボルトのヤング係数比の最 大値と最小値との差

b) ヤング係数比

表 2-3-1 に示すヤング係数比の平均値は,100.96%であり試験 I と異なり 100%を超えた.これは次章 で示すが材料の影響である.また,同じボルトであってもばらつきが生じており,2.72%(102.02-99.30)の違いが生じており,これについては試験 I と同等であった.これらの違いは,約3%ボルト軸力算定結果に違いが生じることを意味している.

c) ボルト径の影響について

計測に先立ち、ボルト軸方向の中央部にてボルト径を計測したが、No.1、No.2、No.3 ボルトでそれぞれ、 21.87、21.88、21.87mm であり、ボルト径の違いは認められなかった.このため、上記で述べた個々のボ ルトによる換算率の違いは、ボルト径の影響ではないと考えられる.

d) 試験上(計測上)の誤差の影響について

表 2-3-2 および図 2-3-1(b)に, No.3 ボルトにおける 3 回繰り返し計測した結果を示す.図 2-3-1(b)に 示す横軸間隔は、図 2-2-4 および図 2-3-1(a)と同様としている.これらの結果に示すように、同一ボル トで繰り返し載荷の計測では、必ずしも試験結果は一致しない.しかし、図 2-3-1(a)と比較して誤差は 小さく、また、表 2-3-1、表 2-3-2 に示す標準偏差も小さくなっており、同一ボルトで行った場合、試 験上(計測上)の誤差はほとんどないと考えられる.ただし、これは試験用治具にセットされた状態で の繰り返し載荷であり、試験用治具からボルトを取り外し、再度ボルトをセットした場合も、同様の結 果になるとは言い切れない.これについては、今後の検討課題である.

2-4 キャリブレーション試験の統計調査

2-4-1 調査概要

本調査は、当部会で実施したボルト試験¹⁾⁻⁴⁾,また鉄道・運輸機構⁵⁾⁻¹³⁾および駒井ハルテック^{14),15)} でのボルト試験,さらに公開されているボルト試験¹⁶⁾で行ったキャリブレーション試験結果を調査した. 調査対象は、M22 と M24 とし、主にボルト製造会社で実施された試験データとした.

調査できたデータ数量は、74 試験データである.なお、キャリブレーション試験は、2-2、2-3 で示したように、1 つのデータで3本のボルトを用いて行われるが、調査データの内、3 試験で2本、2 試験では5本のボルトを用いて行われたこともあり、合わせて223本ボルトの統計調査である(数量の詳細は表2-4-1を参照).

2-4-2 調査結果

a) ボルト長の影響

調査結果の集計値を表 2-4-1 に示し,図 2-4-1 には横軸にボルト長,縦軸に換算率を示す.調査でき たボルト種別は,F10T,F10TW,S10T,S14T および F8T である.なお,図 2-4-1 に示すように,M22 で は 70mm 以下のボルト,M24 では 75mm 以下のボルトでは明らかにその他のボルトより換算率は高く, 特に M24 では顕著であり,表 2-4-1 ではこれを考慮して整理している.これらの短いボルト(以下, 短ボルト)を除けば,換算率にはボルト長の影響は見られなかった.

図 2-4-1(a)に示す F10T(S10T, S14T も含む)-M22 は、ボルト種別による明確な差異は見られず、70mm を超えるボルトにおいて、換算率は表 2-2-3、表 2-2-4 と同様、ヤング係数算定値よりも低く、ヤング 係数比で示すと、例えば F10T で 96.59%、S10T では 97.26%であった.一方、70mm 以下では、逆にヤ

ング係数算定値よりも高く, F10T で 103.52%, S10T では 104.96%であった. なお, データ数量は少な いが S14T においても, F10T や S10T と大きな違いはみられなかった.

図 2-4-1(b)に示す F10T(S10T,S14T も含む)-M24 においても、ボルト種別による差異は見られないが、 75mm を超えるボルトにおいて、換算率は、M22 とは逆にヤング係数算定値より高く、ヤング係数比で 示すと、F10T で 101.24%、S10T では 104.68%であり、さらに、75mm 以下では、F10T では 115.08%と 高かった.

図 2-4-1(c)に示す F8T-M22 においては,70mm を超えるボルトの換算率は,ヤング係数算定値よりも低く,ヤング係数比で示すと96.32%であり,F10T-M22 と大きな違いは見られず,また,100%を超えるデータは見られなかった.一方,70mm 以下では,ヤング係数算定値よりも高く,106.80%であった.

図 2-4-1(d)に示す F8T-M24 は, F10T-M24 と同様, ヤング係数算定値よりも高く, 75mm を超える場合ヤング係数比は 101.43%, 75mm 以下では, 117.42%であった.

	ボルト					換算率				ヤン	/グ係数比	(%)	
規格	径	長さ	数量	平均值	標準偏差	最大値 Max	最小値 Min	Max-Min	平均值	標準偏差	最大値 Max	最小値 Min	Max-Min
		> 70	37	0.0752	0.002177	0.0802	0.0721	0.0080	96.5	2.774	102.9	92.5	10.3
F10T		≦ 70	6	0.0806	0.002105	0.0844	0.0782	0.0061	103.5	2.701	108.3	100.4	7.8
F10TW	l	>70	9	0.0762	0.001920	0.0794	0.0744	0.0049	97.8	2.464	101.9	95.5	6.3
	M22	>70	21	0.0757	0.001805	0.0801	0.0734	0.0066	97.2	2.383	102.8	94.2	8.5
S10T	J	≦ 70	3	0.0817	-	0.0827	0.0811	0.0015	104.9	-	106.1	104.1	2.0
S14		>70	3	0.0767	-	0.0774	0.0758	0.0016	98.5	-	99.4	97.3	2.0
E10		>75	28	0.0938	0.002657	0.1009	0.0885	0.0124	101.2	2.864	108.8	95.4	13.4
FIU	M24	≦75	5	0.1067	0.001784	0.1097	0.1055	0.0004	115.0	1.921	118.3	113.7	4.6
S10	11/124	>75	3	0.0970	-	0.0972	0.0968	0.0004	104.6	-	104.8	104.4	0.4
S14		>75	3	0.0909	-	0.0929	0.0891	0.0037	98.0	-	100.1	96.1	4.0
	1422	>70	48	0.0750	0.001366	0.0767	0.0703	0.0064	96.3	1.749	98.5	90.3	8.2
EQ	IVIZZ	≦ 70	9	0.0832	0.001630	0.0855	0.0809	0.0046	106.8	2.092	109.8	103.8	5.9
1.9	1424	>75	39	0.0940	0.002101	0.0983	0.0897	0.0086	101.4	2.263	106.0	96.7	9.3
	10124	≦75	9	0.1089	0.001786	0.1127	0.1069	0.0057	117.4	1.927	121.6	115.3	6.2

表 2-4-1 キャリブレーション試験の統計調査結果の集計

図 2-4-2 に換算率の頻度分布を示す. 短ボルトを除く赤線のデータ(ここでは S10T および S14T は F10T と違いはほとんどなく全ボルトを含めたデータである)で判断すると, F10T-M24 はデータの範囲 が広く, ピークが無い頻度分布であるが, それ以外はピークがあり, 特に F8T-M22 では狭い範囲での分 布状態であった. 表 2-4-1 で示す標準偏差においても, F10T-M24 > F10T-M22 > F8T-M24 > F8T-M22 で あった. また, 平均値(短ボルトを除く)は, F10T-M22, F10T-M24, F8T-M22, F8T-M24 でそれぞれ, 0.07526, 0.09389, 0.07507, 0.09407 であり, S10T-M22 および S10T-M24 では, それぞれ 0.07577, 0.09708 であった.

以上のように、短ボルトを除けば、実際の換算率はヤング係数算定値より M22 では低く、逆に M24 では高くなる. 仮に、ヤング係数算定値でボルト軸力を算定すれば、計測で求めた換算値に対し, 表 2-4-1 で示したヤング係数比のパーセンテージのボルト軸力が算出されることとなる(例えば F10T-M22(>70mm)では実際の軸力の 96.59%となる). このため、事情によりキャリブレーション試験が 行えない場合は、表 2-4-1 で示した換算率の平均値を用いることを推奨する.

b) 引張強度(材料)の影響

図 2-4-3 は横軸にボルトの引張強度,縦軸に換算率を示す. 図中には引張強度に対する換算率の回帰 直線を示し,表 2-4-2 は回帰分析結果を示す. なお,調査データにおいて,一部引張強度が不明なデー タもあり,これについてはプロットしていない. また,F10T においては,S10T との違いはなく合わせ て回帰分析を行っている.

図に示すように、F10T-M24(>75mm)を除けば、いずれのボルト種別やボルト径においても、引張強度が高くなれば換算率は低くなる負の相関が見られた.相関係数においても、F8T-M24(≦75mm)を除けば 0.40 を超え、相関ありと判断でき、0.70 を超える強い相関も見られた. 2-3 の試験結果は、F10TW であるのに関わらずヤング係数算定値より換算率が高かったのは、図 2-4-3(a)に示すように、引張強度が低いことが要因と判る.

以上のように、換算率は引張強度と負の相関が認められたが、鋼のひずみ計測において、ヤング係数 が同じであれば材料強度の影響はなく、言い換えると、換算率と引張強度との相関は生じないと考えら れる. すなわち、引張強度が高い場合、ボルト材料のヤング係数は高くなっていると考えることが妥当 である.

表 2-4-2 回帰分析の集計結果

計測 位置 径		ボルト	同県直須	相関	借去
位置	径	長さ	凹が直接	係数	加方
	M22	70mm超え	y=-0.8245×10 ⁻⁵ x-0.1642	-0.555	₩-2-4-3(a)
FIOT	10122	70mm以下	y=-0.8557×10-5x+0.1734	-0.737	x-2-4-3(a)
1101	M24	75mm超え	y=0.50244×10-5x+0.0259	0.210	図 2 4 3(b)
		75mm以下	y=-0.79585×10 ⁻⁴ x+0.9589	-0.489	×-2-4-3(0)
	M22	70mm超え	y=-0.3742×10 ⁻⁵ x+0.1079	-0.416	図 2 4 3 (c)
F8T	10122	70mm以下	y=-0.2034×10 ⁻⁴ x+0.2589	-0.880	×-2-4-3(c)
F8T	M24	75mm超え	y=-0.9607×10-5x+0.1784	-0.798	⊠-2-4-3(d)
	19127	75mm以下	y=-0.1712×10-5x+0.1238	-0.097	因 2 平 3(u)

c) 荷重値(ボルト軸力)の影響

表 2-2-3, **表 2-2-4**, **表 2-3-1**, **表 2-3-2** および図 2-2-4, 図 2-3-1 で示したように, 換算率は荷重値 により異なるが, 試験で用いるボルトの換算率は, すべての荷重値の平均値を用いている. そこでは, 荷重の影響を明確にすることとした.

図 2-4-4, 図 2-4-5 は横軸に荷重値,縦軸には換算率(平均換算率)と各荷重での換算率を差し引い て求めた値を示している.例えば,表 2-2-3 に示す M22×85の No.1 ボルトでは,平均換算率は 0.07361 であるが,荷重が 50kN 時の換算率は 0.07353 でありその差は 0.0008,荷重が 300kN の時の換算率は 0.07326 でその差は-0.0027 であり,図 2-4-4,図 2-4-5の縦軸はこの換算率の差(以下,換算率差)を 示している.また,図中には各荷重値での平均値とその平均値を用いて求めた回帰直線を示している.

図 2-4-4 に示す短ボルトでない場合(M22: >70mm, M24:>75mm)では、荷重が大きくなれば、換算 率差は小さくなり、ある荷重値を境(後に明確にするが 182kN 付近)に換算率差は負に転じ、さらに 荷重が高くなれば負の換算率差が大きくなる傾向が示された.また、回帰直線の傾きに大きな違いなく、 この傾向にボルト種別やボルト径の影響はないと考えられる.なお、F8T-M24のみ若干傾きが大きいよ うに思われるが、これは 50kN の平均値が異常に高くなった影響であり、図 2-4-4(d)中に示すように、 これを除いた回帰直線で判断すれば、ほぼ傾きは同じになった. 一方,図2-4-5に示す短ボルトでは、データ数は少ないが、M22では図2-4-4とほぼ同等であった. 図2-4-5(d)に示すF8T-M24では右肩下がりの傾向は同じであるが傾きが大きい.これは50kNの平均値 が大きくその影響であり、図中の点線はこの50kNのデータを除いて求めた回帰直線を示しているが、 それでもその他の回帰直線の傾きより大きかった.さらに、図2-4-5(b)に示すF10T-M24では逆に右肩 上がりの相関となった.以上のように、M24の短ボルトでは、その他のボルトと一部で傾向が異なった. ただし、データ数量が少ないため、これが偶然なのかどうかは現在のところ不明である.

図 2-4-6(a)は、横軸に荷重値、縦軸に F10T-M24(≦75mm)および F8T-M24(≦75mm)を除いた換算率差 の平均値を示し、これらを用いた回帰直線を示している.この回帰直線を用い縦軸が 0(y=0)になる荷重 値は 182kN であり、現在の換算率算定法は、ボルト軸力が 182kN であれば軸力算定に影響のない換算 率である.言い換えると 182kN 付近のボルト軸力であれば精度よくボルト軸力を計測できるが、それ より大きくても小さくてもボルト軸力の誤差が生じてくるものと考えられる.その影響度は、4.858× 10⁻⁶/kN (回帰式の傾き) となる.

図 2-4-6(b)は、横軸に荷重値、縦軸に換算率差の標準偏差を示す.図 2-4-3(b)および図 2-4-4(b)で示 したように、F10T-M24(>75mm)ではばらつきが大きかったが、図 2-4-6(b)で示す標準偏差も大きいこ とが判る.その他のデータでは、ボルト種別やボルト径による標準偏差に大きな違いは見られないが、 50kNの標準偏差はボルト種別に依らず高く、分布幅が広いことが判る.これらを考慮すると、現状の キャリブレーション試験を行う場合において、より精度よく換算率を算出するには、ばらつきが大きい 50kNのデータは除外して換算率を算定するのがよいと考えられる.

d) 1 試験データ(3本)内での試験結果の違いについて

表 2-2-3, 表 2-2-4, 表 2-3-1 で示したように,1つの試験データ(3本)内であっても換算率が異なり, ヤング係数比の最大値と最小値の差(表 2-2-3, 表 2-2-4, 表 2-3-1 中に示す D.ヤング係数比の Max-Min)では 2.9%の違いが生じる場合もあり,言い換えると 2.9%ボルト軸力に違いが生じることと なる.そこで,1試験データ内で換算率にどの程度の違いが生じるかを明確にするため,図 2-4-7 には 74 データにおけるヤング係数比の Max-Min を縦軸に,横軸にはボルト長で示す.

図に示すように、ボルト長との関係性はなく、全体的にばらつきがあり、3%以下となるデータが多いが、16データでは3%を超えた.また、最大では7.1%なる場合も見られたが、これは図2-4-1(b)で示すように、F10T-M24のボルト長200mmのデータであり、このデータでは3本中1本が極端に高くなるデータが存在したからである.なお、ボルト種別による明確な違いは見られず、平均値はM22で1.87%、M24では2.21%であった.

2-5 キャリブレーション試験の考察と改良提案

これまで述べてきたように、キャリブレーション試験は荷重(ボルト軸力)依存性がある.そこで、 本章では、これがどの程度、ボルト軸力測定に影響するのかを示し、荷重依存性を考慮したキャリブレー ション試験の改良案を検討する.

前節の 2-4 で述べたように,現在の換算率算定方法では, ボルト軸力が 182kN 付近では精度よく計 測できる換算率であると考えられる.これは,低い荷重域から高い荷重域までの載荷試験で得られた換 算率の平均値を用いているからである.実際に計測されるボルト軸力は導入軸力付近であり,例えば, F10T-M22 であれば導入軸力は 226kN でありその差 44kN となるが,これがどの程度影響するのかをま ず調べてみる.

荷重による影響については、図 2-4-6(a)で示したように、影響度を表す回帰式の傾きは 4.858×10⁻⁶/kN であり、これを用いて 44kN の影響を算定すると、換算率として 0.00021 の違いが生じると考えられる. M22 のヤング係数算定値は 0.07793 であり、その影響度として 0.27%、言い換えると導入軸力として 0.27%の違いが生じることとなる. 同様に、導入軸力が 262kN である F10T-M24 では 0.42%影響することとなる.

荷重依存性を考慮した,より精度の高い換算率となるキャリブレーション試験方法としては,導入軸 カのみの荷重値でキャリブレーション試験を行い,これで求めた換算率を用いればよいと考えられる. その際,複数回の繰り返し載荷をするのが良いと考えられる.ボルト試験では同じ試験を3回行う場合 や5回行う場合があるがより精度の高い換算率とするため、1本のボルトにつき5回,これを3本のボ ルトで行うのがよいと考えられる.この方法であれば、15データで求めた換算率であり、従来の方法よ り少ない計測回数(表2-2-3,表2-2-4では36データ)でのキャリブレーション試験となる.なお、こ の試験方法で換算率を算定したとしても、精度よく算出されるボルト軸力の範囲は、導入軸力付近であ る.例えば、予備締め(導入軸力の60%)のボルト軸力(M22では136kN,M24では157kN)であれ ば、先と同様にその影響度を算定すれば、M22では0.56%、M24では0.55%の違いが生じる.そのため、 これらの影響を考慮して換算率を補正するのがよいと考えられる.なお、補正に用いる図2-4-6(a)の回 帰式(4.858×10⁶/kN)は、F10T-M24 および F8T-M24 を除いて算定したものであるが、これらのボルトで も適用できる可能性はある.しかし、現状ではこれを明言するのは困難な状況であり、適用の範囲外と するのがよいと考えている.

上記で示したキャリブレーション試験の改良案をまとめると、キャリブレーション試験は、ボルトの 導入軸力(例えば、F10T-M22:226kN、F10T-M24:262kN)である荷重値を載荷し、そのひずみから換算率 を算定する.これを1本のボルトで5回、3本のボルト行いその平均値を用いる.なお、換算率は軸力 依存性があるので、予備締め計測を行う等、導入軸力と大きく異なるボルト軸力を計測する場合には、 4.858×10⁻⁶/kN に応じた換算率の補正を行うのがよい.なお、この補正は、M24でボルト長が75mm以 下では行わないのがよい.

2-6 結 論

本研究は、換算率に及ぼす影響因子を明確にし、試験方法の改良案を示すことを目的とした実験研究 (3 試験データ9ボルト)および調査研究(74 試験データ223 ボルト)である.本研究から得られた主 な結論は、以下の通りである.

- (1) F10T-M22 のボルト径の計測結果において、中央部(ボルト軸方向)の平均値は 21.7mm であり、ボ ルト径の最大値と最小値の差は 0.4mm であった.これは、換算率に違いが生じる要因の1つと考え られる.
- (2) 換算率は、短いボルト(短ボルト)でなければボルト長による換算率の差異はない. ここでいう短 ボルトとは、M22では70mm以下、M24では75mm以下のボルトである.
- (3) 調査結果(表 2-4-1)による換算率の平均値は(短ボルトを除く), F10T-M22, F10T-M24, F8T-M22, F8T-M24 でそれぞれ, 0.07526, 0.09389, 0.07507, 0.09407 であった.また, S10T-M22 および S10T-M24 では, それぞれ 0.07577, 0.09708 であった.これらは, ヤング係数算定値(鋼のヤング係数および標準ボルト径で算出した場合のことであり, M22 で 0.07793, M24 では 0.09274)より M22 では低く, 逆に M24 では高かった.なお,短ボルトは,いずれのボルト種別およびボルト径においても,換算率は高くなった.
- (4) 換算率は、引張強度が大きくなれば低くなる負の相関が認められた.ただし、鋼のひずみ測定において、ヤング係数が同じであれば材料強度の影響はないと考えられ、引張強度が高い場合、ボルト 材料のヤング係数は高くなっているものと考えるのが妥当である.
- (5) 換算率は、1 試験で3本のボルトを用いて算出するが、同じ製造ロットのボルトであっても、換算率に若干の違いが生じた.調査結果におけるヤング係数比の最大値と最小値の差の平均値は、M22で1.87%、M24では2.21%となり、最大では7.1%となる場合もあった.
- (6) 換算率は,荷重(ボルト軸力)の影響を受け,荷重が高ければ,換算率は低くなる傾向が示された. その影響度は,4.858×10⁻⁶/kN である.
- (7) 現在のキャリブレーション試験方法(低い荷重域から高い荷重域でのひずみの平均値を使用)は、 ボルト軸力が182kN付近であれば、精度よく計測できる試験方法であると考えられる.ただし、換 算率は軸力の影響を受けるので、ボルトの導入軸力(M22: 226kN, M24:262kN)の計測では、F10T-M22 で 0.27%、F10T-M24 では 0.42%の誤差が生じる.
- (8) 現在のキャリブレーション試験方法を用いて換算率の精度を上げるには、ばらつきが大きい低い荷 重域(50kN)のデータは除外して換算率を算定するのがよい. さらに、精度を向上させる試験方法と して、ボルトの導入軸力となる荷重を載荷し、そのひずみから換算率を算定するのがよい. これを 1本のボルトで5回、3本のボルト行いその平均値を用いる.なお、換算率は荷重依存性があるので、 導入軸力と大きく異なるボルト軸力域を計測する場合には、4.858×10⁻⁶/kN に応じた換算率の補正を 行うのがよい.

参考文献

- 南邦明,田村洋,吉岡夏樹,内田大介,茂呂充,安藤光希:高力ボルト継手における摩擦面の数 に応じた導入ボルト軸力に関する検討,土木学会論文集A1, Vol. 75, No. 1, pp. 46-57, 2019.2.
- 南邦明、田村洋,白旗弘実,内田大介,吉岡夏樹,濱達矢:高力ボルト摩擦接合継手のすべり耐力試験におけるすべり発生時の変位量,土木学会論文集 A1, Vol. 75, No. 2, pp. 249-256, 2019.8.
- 3) 白旗弘実,南邦明,藤野大地,宮井大輔,矢野将太,横田渉:F10Tを用いた高力ボルト摩擦接合 継手におけるナット回転角法の適用の検討,土木学会論文集A1, Vol. 76, No. 1, pp. 1-14, 2020.1.
- 4) 南 邦明, 斉藤雅充, 横山秀喜, 杉本一朗, 能島隆男, 増永寿彦, 長崎英二: 亜鉛アルミ擬合金溶射 を施した高力ボルト摩擦接合継手に関する研究, 土木学会論文集 A1, Vol. 68, No. 2, pp. 427-439, 2012.6.
- 5) 南 邦明, 徳富恭彦, 清水織恵, 河村健一, 森井茂幸: 亜鉛アルミ擬合金溶射を施した高力ボルト摩 擦接合継手の導入軸力確認試験, 土木学会論文集 A1, Vol. 69, No. 1, pp. 133-138, 2013.4.
- 南邦明,吉原伸行,徳富恭彦,鈴木茂弘:りん酸塩処理した溶融亜鉛めっき接合面の高力ボルト摩 擦接合継手におけるナット回転角の提案,土木学会論文集 A1, Vol.69.No.3, pp.467-480, 2013.10.
- 7) 南邦明:厚膜型無機ジンクリッチペイントを施した摩擦面で 15%増し締めした高力ボルト試験, 土木学会論文集 A1, Vol.73, No.1, pp.32-39, 2017.1.
- 8) 南邦明:厚膜型無機ジンクリッチペイントを施した高力ボルト継手における導入軸力の影響の考察, 土木学会論文集 A1, Vol.74, No.1, pp.58-63, 2018.1.
- 9) 南邦明,横山秀喜,徳富恭彦,森井茂幸:亜鉛アルミ合金溶射を施した高力ボルト摩擦接合継手に 関する研究,土木学会論文集 A1, Vol.74.No.3, pp.385-398, 2018.10.
- 10) 南 邦明, 横山秀喜, 斉藤雅充, 村上貴紀: 厚膜型無機ジンクリッチペイントを施し 15%増し締めし た高力ボルト継手に関する 2,3 の考察, 土木学会論文集, Vol. 75, No.2, pp127-140, 2019.5.
- 11) 南 邦明, 横山秀喜, 斉藤雅充, 村上貴紀: 金属溶射を施したフィラープレートを有する高力ボルト 摩擦接合継手に関する研究, 土木学会論文集 A1, Vol.75, No.3, pp.320-331, 2019.11.
- 12) 南邦明,横山秀喜,天野貴文:一次締め24時間後に本締め施工する高力ボルト継手における継手 形式および板厚の影響,土木学会論文集A1, Vol. 76, No. 1, pp. 61-66, 2020.1.
- 13) 筒井康平,南邦明,横山秀喜,天野貴文,田村洋:表裏面で仕様の異なる摩擦面における高力ボルト摩擦接合継手のすべり挙動(土木学会論文集 A1 投稿中)
- 14) 金城 力, 峯山智也, 吉岡夏樹, 山口隆司: 施工段階を配慮した 2 回締め高力ボルトセットを用い た高力ボルト摩擦接合継手の適用性に関する研究,日本鋼構造協会 鋼構造論文集, Vol.24, No.93, pp39-53,2017.3
- 15) 大西孝典, 溝口孝夫, 吉岡夏樹, 齋藤史郎, 篠崎裕一: 両側に補強部材を連結する 2 段締めナットの開発,土木学会第 69 回年次学術講演会, I-446,2014.9
- 16) 国土交通省 国土技術政策研究所:国土技術政策総合研究所資料 No.827,2016.2.

3. リラクセーション試験方法に関する検討

3-1 概 論

鋼橋の現場接合には、溶接接合とボルト接合があるが、ボルト接合を用いる場合、一般に高力ボルト 摩擦接合継手を用いている. 道路橋示方書¹⁾(以下、道示)および鉄道構造物等設計標準²⁾(以下、鉄 道標準)において、高力ボルト摩擦接合継手(以下、ボルト継手)を用いる場合、摩擦面は、黒皮を除 去した粗面状態(以下、粗面状態)および厚膜型無機ジンクリッチペイント(以下、無機ジンク)を塗 布した状態を基本としている. このため、それ以外の摩擦面を用いる場合には、ボルト試験を実施して からその適用を検討しており、これまで数多くのボルト試験が行われてきた. ボルト試験では、リラク セーション試験やすべり耐力試験が実施されるが、試験方法の詳細に明確な規定はなく、試験実施者の 判断で行われているのが現状である. その1つにリラクセーション試験における試験開始の初期値の設 定方法が挙げられる.

リラクセーション試験は、ボルト締付け後からある設定した期間内(例えば1ヶ月)における軸力低 下を調べる試験であるが、その際、試験開始時を締付け直後とする場合や、締付け直後から 30 秒後等、 ある程度時間を置く場合もあり、初期値の定義は明確にされていなかった.リラクセーション試験は、 本来、締付け直後から行うべきと考えられるが、この場合、締付け直後の軸力低下にばらつきが生じ、 このばらつきが試験結果に大きく影響することが考えられていた.これに配慮し 30 秒後程度する場合 が多いが、この間の軸力の低下は大きいのも事実である.ただし、これまで初期値の設定方法が、試験 結果に及ぼす影響を定量的に評価されていなかった.

本研究は、リラクセーション試験における初期値の設定方法が試験結果に及ぼす影響を明確にするこ とを目的に行った実験的研究である.本研究では、導入軸力、無機ジンクの膜厚および摩擦面の違いを パラメータとした高力ボルト摩擦接合継手試験体を作成した.これらの試験体を用いてリラクセーショ ン試験を行い、軸力導入時から 30 秒間のボルト軸力低下の影響が試験結果に及ぼす影響を明確にし、 リラクセーション試験における初期値のあり方を示した.

3-2 試験体の説明

3-2-1 試験体の使用材料, 形状および種類

本試験で使用した鋼材および高力ボルトの材料特性を表 3-2-1,表 3-2-2 に示す.本研究では,パラ メータの異なる試験 I,試験 II および試験 III の 3 試験を実施することとし,試験体はそれぞれ T1, T2, T3 の 3 種類を用いた(図 3-2-1 参照).使用鋼材は,T1 は SM570,T2 および T3 では SM490Y を用い,使 用ボルト(すべり側)は,高力六角ボルト F10T(W)-M22 とし,ボルト長は 75mm(T1),90mm(T2)およ び 85mm (T3)のボルトを用いた.

図 3-2-1 に試験体形状を示す. 試験体の β 値は, 設計ボルト軸力(205kN), 使用鋼材の降伏強度, すべり係数を 0.45 で算出し, T1, T2 および T3 でそれぞれ 0.47, 0.43 および 0.59 となる試験体である. なお, 試験体はすべり側と固定側を設定した.

試験体の種類を表 3-2-3 に示す. T1 試験体は導入軸力をパラメータとした試験体であり、ここでは4 レベルの導入軸力となるようナット回転角を変えた試験体(N1~N4)である. T2 試験体は無機ジンクの 膜厚をパラメータとした試験体であり、膜厚は厚膜(P1)と薄膜(P2)の2種類である. T3 試験体は摩擦面 処理方法をパラメータとした試験体であり、摩擦面には無機ジンク(薄膜)(P)、赤さび(R)、ブラスト(B)、 グラインダー(G)の4種類である. T1, T2, T3 試験体でそれぞれ4種類,2種類,4種類,合わせて10種類 の試験体を用いた. 試験体数は各3体作成し, 合わせて30体を試験に供した. なお, 本研究はリラク セーション試験を対象としたものであるが、本試験体はすべり耐力試験も考慮したものである. すべり 耐力試験結果については、別途報告することを考えている.

試驗休		板厚	機械的性質						
形状	鋼種	(mm)	降伏強度 (N/mm ²)	引張強度 (N/mm ²)	伸び (%)				
T1	SM570	14	653	701	32				
(試験I)	SM570	10	608	635	30				
T2	SM490YB	25	451	560	23				
(試験II)	SM490YA	12	434	465	25				
T3	SM490YB	19	437	530	23				
(試験III)	SM490YA	12	430	519	23				

表 3-2-1 使用鋼材の機械的性質

表 3-2-2 使用ボルトの機械的性質とトルク係数値

		ボルト						座金		
ポルト		4号試驗	寅片		製品		製品	製品	トルク	
径・長さ・規格	降伏 強度 ^(N/mm²)	引張 強度 ^(N/mm²)	伸び (%)	絞り (%)	引張 荷重 (^{kN})	硬さ (HRC)	硬さ (HRC)	硬さ (HRC)	係数値 (平均値)	備考
M22×75(F10TW)	995	1058	20	67	320	32	26	38	0.132	т1
M22×70(S10T) *	1049	1105	20	74	324	32	27	40	-	11
M22×90(F10T)	1008	1062	18	69	328	32	26	38	0.135	T2
M22×85(F10T)	1019	1074	19	69	332	32	25	40	0.131	T 3

注)*:固定側で使用.

表 3-2-3 試験体の種類

試験	体		鋼	材				
形出	夕称	接触面	板厚	(mm)	ボルト	β值	本締め	
1211	1141		t	ts				
	N1						回転角90°	
T1	N2	価報にいた(一番)作)	14	10	F10TW	0.47	回転角75°	
(試験I)	N3	悪機ンンク(標準)	14	10	×75	0.47	回転角70°	
	N4						回転角60°	
T2	P1	無機ジンク(厚膜)	25	12	F10T×	0.42		注) <i>8</i> :設計z
(試験II)	P2	無機ジンク(薄膜)	23	12	90	0.45		使用鋼材の
	Р	無機ジンク(薄膜)					設計ボルト	すべり係数
Т3	R	赤さび(自然さび)	10	12	F10T×	0.50	軸)が10%	
(試験III)	В	ブラスト(Sa2.5)	19	12	85	0.39	頃し和め	t: 母板, ts
	G	グラインダー						

ボルト軸力, 降伏強度. 0.45 で算定

: 添接板

3-2-2 摩擦面処理

摩擦面処理は,T3のG試験体を除いて,まず,グリッドブラストにて素地調整(ISO Sa2.5:75μmRzjis 以下)を行った.その後,T3のB試験体は,試験の実施まで発錆させないよう留意した.

次に, 無機ジンクを塗布する T1 の全試験体は, 無機ジンクを標準膜厚 75μm 塗布し, T2 の P1 試験体 は 100μm, T2 の P2 試験体および T3 の P 試験体は 50μm を目標に塗布した. これらの試験体は, 塗装 後約 1 ヶ月間, 工場内で乾燥させた後に試験場へ搬送した.

T3のR試験体は、自然さびを発錆させるため、約2ヶ月間、屋外で曝露した.次に、T3のG試験体では、グラインダー(サンダー)処理を行った.その後、試験の実施まで発錆させないよう留意した. 試験体の製作は、T2、T3は同じ橋梁製作会社で同時に行い、T1は別の橋梁製作会社で行った.

3-2-3 膜厚の測定

無機ジンクの膜厚は、リラクセーションによる軸力低下に影響する.そこで、膜厚の計測を行った. 測定位置は、図 3-2-2 に示すボルト孔周辺の2ヶ所(試験Iでは4ヶ所)とし、膜厚測定は、渦電流式 膜厚計を用いて行った.

図 3-2-2 膜厚の計測位置

各試験体の膜厚測定結果を表 3-2-4 に示す. これらの結果は,各試験体の平均値を示している. 膜厚 測定結果において,N試験体は標準膜厚の75µm に対し,70.2~75.4µm と概ね想定通りであった. P1 試 験体は目標の100µm に対し126.2µm と想定より若干厚く,P2 試験体は目標の50µm に対し57.5µm とほ ぼ想定通りとなり,P1 と P2 では膜厚の違いが大きく異なる試験体となった.P 試験体は,ほぼ想定通 りの 52.9µm であった.

試驗	贠体					膜厚	$[\mu m]$				
	反称	1	体目[-]	[]	2	体目[-2	2]	3	体目[-3	3]	3体の
形扒	名称	母板	添接板	平均	母板	添接板	平均	母板	添接板	平均	平均
	N1	78.4	72.7	75.5	77.8	73.0	75.4	78.3	72.3	75.3	75.4
Т1	N2	73.3	70.3	71.8	69.1	64.5	66.8	70.5	73.6	72.0	70.2
11	N3	73.4	67.2	70.3	79.4	67.7	73.5	82.3	69.7	76.0	73.3
	N4	78.4	66.7	72.6	82.0	72.5	77.3	77.8	74.1	75.9	75.3
т2	P1	99.4	126.6	117.5	116.8	131.5	126.6	135.6	133.9	134.4	126.2
12	P2	48.6	49.4	49.1	72.4	57.5	62.4	66.7	58.4	61.1	57.5
T3	Р	63.4	57.6	59.5	51.5	50.2	50.6	55.2	45.2	48.5	52.9

表 3-2-4 無機ジンクの塗装膜厚計測結果

3-2-4 ボルトの締付け

T1 試験体のボルト締付けにおいて,一次締めは 150N・m でボルトを締付け,本締めは,ナット回転法 を用いて,文献 3)を参考に回転角を N1, N2, N3, N4 でそれぞれ,90°, 75°, 70°, 60°で締付けた.なお,固 定側のボルトについては,S10T をシャーレンチで締付けた.

T2, T3 試験体のボルト締付けにおいて、一次締めは設計ボルト軸力の 60%、本締めは、設計ボルト軸 力の 110%を目標に締付けた.なお、固定側のボルトについては、さらに 20kN 増し締めした.

3-3 リラクセーション試験方法

3-3-1 キャリブレーション試験

ボルト軸力の計測を行う際,計測したひずみに鋼のヤング係数を乗じることでボルト軸力は算出でき るが,ボルト材料のヤング係数のばらつきやボルト径の寸法公差が生じることもある.そこで,ボルト 軸力の計測に際し,表 3-2-2 に示すすべり側の3種のボルトに対し,荷重とひずみの関係から換算率を 求めるキャリブレーション試験(1種類のボルトのつき3本のボルトを使用)を実施し,ひずみからボ ルト軸力を算出するための換算率を求めた.

キャリブレーション試験は、図 3-3-1 に示すように、2 枚のひずみゲージをボルト軸部に貼付し、ボルトを専用冶具にセットした上でボルトに引張荷重を与え、荷重とひずみの関係から換算率を求めた. なお、試験はボルト製造会社で実施した.

図 3-3-1 ひずみゲージの取り付け

試験結果の一例として, 試験 I で使用する F10TW-75 の結果を図 3-3-2 に示す. 以下に示す換算率は, 荷重をひずみで除して求めたものであり,この直線の傾きが換算率を示している.なお,すべての荷重 値での平均値がボルト軸力計測で用いる換算率である.図 3-3-2 に示すように,3本のボルトで大きな 違いはなく,F10TW-75の換算率は3本の平均値0.07867 とした.同様にして求めた F10T-90 (試験 II) および F10T-85 (試験 III) はそれぞれ,0.07447,0.07415 であった.

3-3-2 リラクセーション試験

リラクセーションによる軸力低下を調べるための軸力の計測は、すべてのすべり側のボルトに対して 実施した.リラクセーション試験は、キャリブレーション試験と同様、ボルト軸部に2枚のひずみゲー ジを貼付し(図3-3-1)、それらのゲージ出力(ひずみ値)の平均値に前項の3-3-1で求めた換算率を乗 じ、トルクレンチによりボルトを締付ける際のボルト軸力を算出した.

リラクセーション試験は,表 3-2-3 で示した 10 ケースであり,合わせて 60 本のボルトで実施した. 試験 I は,ボルト製造会社で実施し,計測期間は 558 時間(23 日)とした.その際,軸力導入時(初期値) の定義は,締付け 3 秒後とした.軸力の計測は,軸力導入時とそこから 30 秒後を手動計測で行い,そ の後は経過時間とともに計測間隔を大きくて軸力計測を行った.また,温度の影響に配慮し,計測の際, ダミーボルトを用いて行った.次に,試験 II および試験 III は,横浜国立大学で同時に実施し,計測期 間は 672 時間(28 日)とした.ここでは,10 秒ごとに自動計測できるようデータロガーをセットし,軸力 導入時の定義は,軸力導入後に出力されるひずみの最大値とした.このため,締付け直後(0 秒後)か ら最大で 9 秒遅れが生じる可能性があることはご了承いただきたい.また,30 秒後とは,軸力導入時と した時点から 30 秒経過した時とした.

試験 II では, P1-1, P2-1 の固定側のボルト4本において, 動ひずみ計を用い, 1 秒毎に締付け直後(0 秒後)から 120 秒間の軸力を計測し, 0 秒~120 秒間の軸力変動を詳細に調べた.

3-4 リラクセーション試験結果

3-4-1 試験 | の試験結果

a) 軸力導入初期(3秒後,30秒後)の計測結果

表 3-4-1 に軸力導入初期のボルト軸力計測結果を示す.ここで示す設計値比率とは,設計ボルト軸力 (205kN)に対する計測軸力の比率を示している.なお,ボルト締付け後,ひずみケージの不具合により, 一部のボルトでは,計測が不能になったケースが生じたため,表中に-で示している.

試験	体					ボル	、軸力									神力破方变				
分類	名称		軸力導	尊入時(3 N _a [kN]	移後)]			軸力導	入時から N _b [kN]	。30秒後 			軸力位 30秒後	氐下値 & [kN]			軸 30	力残存 秒後 ['	·率 %]	
		ボル	ŀNo.	亚均	設計値	比率(%)	ボル	小No.	亚均	設計値	比率(%)	ボル	ŀNo.	亚	均	ボル	⊦No.	亚	均	標準
		No.1	No.2	1~0	ыпы		No.1	No.2	1~~	M III M	FC(/0)	No.1	No.2	1)	No.1	No.2	-	~~)	偏差
	N1-1	276.5	281.5	279.0	136.1		271.7	275.8	273.8	133.5		4.8	5.7	5.3		98.3	98.0	98.1		
	N1-2	269.9	242.4	256.2	125.0	132.1	267.1	238.3	252.7	123.3	130.3	2.8	4.1	3.4	3.9	99.0	98.3	98.7	98.6	0.47
	N1-3	278.8	276.2	277.5	135.4		275.2	274.0	274.6	134.0		3.6	2.2	2.9		98.7	99.2	99.0		
	N2-1	253.3	250.7	252.0	122.9		251.4	247.7	249.6	121.7		1.9	3.0	2.4		99.2	98.8	99.0		
	N2-2	249.4	241.2	245.3	119.7	120.0	245.2	-	245.2	119.6	119.0	4.2	-	4.2	3.3	98.3	-	100.0	98.6	0.56
無機	N2-3	229.2	252.8	241.0	117.6		224.3	250.3	237.3	115.8		4.9	2.5	3.7		97.9	99.0	98.5		
ジンク	N3-1	223.0	250.1	236.6	115.4		220.1	245.6	232.9	113.6		2.9	4.5	3.7		98.7	98.2	98.4		
	N3-2	228.8	229.9	229.4	111.9	112.4	225.1	227.8	226.5	110.5	110.9	3.7	2.1	2.9	3.0	98.4	99.1	98.7	98.7	0.39
	N3-3	220.1	230.1	225.1	109.8		217.3	228.3	222.8	108.7		2.8	1.8	2.3		98.7	99.2	99.0		
	N4-1	212.5	210.4	211.5	103.1		210.2	207.7	209.0	101.9		2.3	2.7	2.5		98.9	98.7	98.8		
	N4-2	202.6	218.1	210.4	102.6	102.0	199.5	216.4	208.0	101.4	100.5	3.1	1.7	2.4	3.0	98.5	99.2	98.9	98.6	0.61
	N4-3	202.8	208.1	205.5	100.2		197.6	205.1	201.4	98.2		5.2	3.0	4.1		97.4	98.6	98.0		

表 3-4-1 軸力導入初期でのボルト軸力計測結果と30 秒のリラクセーションによる軸力低下の影響(試験 I)

軸力導入時(3 秒後)のボルト軸力は,設計値比率の平均値で示すと,N1,N2,N3,N4 でそれぞれ,132%, 120%,112%,102%とほぼ10%の違いで軸力が導入された.30 秒後にはそれぞれ130%,119%,110%,101% に低下し,低下する軸力で示すとN1,N2,N3,N4 でそれぞれ3.9kN,3.3kN,3.0kN,3.0kN と導入軸力が高 ければ若干であるが軸力低下が大きかった.ただし,軸力残存率で示すと98.6%(N3 は98.7%)と違いは なく,導入軸力に比例した軸力低下となっていることが判る.また,表中には各試験体6 体中での標準 偏差を示しているが,明確な傾向は見られず,軸力導入初期おいて,導入軸力の大きさの違いによる軸 力残存率のばらつきの影響は生じないものと考えられる.

b) 軸力導入時から 558 時間後の残存軸力の計測結果

表 3-4-2 には軸力導入時から 558 時間後の残存軸力を示し,軸力低下値および軸力残存率に関しては, 初期値を軸力導入時(3 秒後)とした Case1 と 30 秒後とした Case2 を示す.

558時間後の残存軸力は,設計値比率の平均値で示すと,N1,N2,N3,N4でそれぞれ,119%,108%,100%, 90%まで低下した. Case1の軸力低下値は,N1,N2,N3,N4でそれぞれ28.0kN,26.2kN,25.6kN,23.9kN と 導入軸力が高いとリラクセーションによる軸力低下が大きくなった.ただし,軸力残存率で示すとそれ ぞれ89.7%,89.3%,88.9%,88.6%とむしろ導入軸力が低い方が,軸力残存率は低くなった.一方,Case2 の軸力残存率はN1,N2,N3,N4でそれぞれ91.0%,90.6%,90.0%,89.9%であり,平均値では,Case1に比 べ1.15~1.30%ptの範囲でCase1の方が軸力残存率は小さかった.

	558	3時間後	(23日後)の		Case1(初期値	を3秒後	とした	と場合)			Case2(∤	刃期値を	30秒後	後とし†	と場合))	動力	残存率	の差
試験 体 夕称		ボル N _c	ト軸力 [kN]		軸 558日	力低下 時間後	値 [kN]	:	軸力列 558 時間	曵存率 引後 [%]	軸 558日	l力低下 時間後	値 [kN]	:	軸力残存率 558 時間後 [%]	(Case2-Case1) [%pt]		
11 1/1	ボル	ŀNo.	⇒∿⇒⊥は古	レックの	ボル	ŀNo.	J7 ₩3	ボル	ŀNo.	T7 ₩5	標準	ボル	小No.	J7 ₩3	ボル	ŀNo.	TT ₩	標準	ボル	⊦No.	₩ 1
	No.1	No.2	成訂旭	↓□卆(%)	No.1	No.2	平均	No.1	No.2	平均	偏差	No.1	No.2	平均	No.1	No.2	平均	偏差	No.1	No.2	平均
N1-1	248.2	252.0	122.0		28.3	29.5		89.8	89.5			23.5	23.8		91.4	91.4			1.59	1.85	
N1-2	236.3	216.4	110.4	118.5	33.6	26.0	28.0	87.6	89.3	89.7	1.26	30.8	21.9	24.1	88.5	90.8	91.0	1.33	0.92	1.54	1.30
N1-3	254.4	250.1	123.0	1	24.4	26.1	1	91.2	90.6	1		20.8	23.9		92.4	91.3			1.19	0.73	
N2-1	227.7	225.0	110.4		25.6	25.7		89.9	89.7			23.7	22.7		90.6	90.8			0.68	1.09	
N2-2	224.3	-	109.4	108.0	25.1	-	26.2	89.9	-	89.3	1.03	20.9	-	22.9	91.5	-	90.6	0.74	1.54	-	1.22
N2-3	200.6	226.6	104.2	1	28.6	26.2	1	87.5	89.6	1		23.7	23.7		89.4	90.5			1.91	0.90	
N3-1	198.8	223.2	102.9		24.2	26.9		89.1	89.2			21.3	22.4		90.3	90.9			1.17	1.64	
N3-2	202.4	204.6	99.3	99.9	26.4	25.3	25.6	88.5	89.0	88.9	0.34	22.7	23.2	22.6	89.9	89.8	90.0	0.48	1.45	0.82	1.15
N3-3	194.7	204.8	97.4	1	25.4	25.3	1	88.5	89.0	1		22.6	23.5		89.6	89.7			1.14	0.70	
N4-1	187.7	187.1	91.4		24.8	23.3		88.3	88.9			22.5	20.6		89.3	90.1			0.97	1.16	
N4-2	180.5	192.6	91.0	90.3	22.1	25.5	23.9	89.1	88.3	88.6	0.38	19.0	23.8	20.9	90.5	89.0	89.9	0.77	1.38	0.69	1.30
N4-3	179.8	183.4	88.6	1	23.0	24.7	1	88.7	88.1	1		17.8	21.7	1	91.0	89.4	1		2.33	1.29	

表 3-4-2 558 時間後の残存軸力計測結果と 558 時間後のリラクセーションによる軸力低下の影響(試験 I)

図 3-4-1 は縦軸に軸力残存率,横軸に経過時間を対数で表示した試験結果を示し,図中の直線は経過 時間に対する回帰直線を示している.図に示すように,Case2の回帰直線はCase1の上側にあるが,い ずれの試験体においても,Case1とCase2では傾きに大きな違いはなかった.ただし,導入軸力が低け れば,軸力残存率は小さくなる傾向を示し,また,回帰直線の傾きが大きくなった.これは,導入軸力 の大きさが軸力残存率に及ぼす影響は,3-4-1 a)で示したように軸力導入初期の影響は小さく,長い時 間を経て軸力が低下したときに生じたからと考えられる.また,N1のCase2を除けば,相関係数は0.90 を超えた.

図 3-4-2 は、Case1 と Case2 の軸力残存率を比較するため図化したものであり、図中の数値は Case1 の軸力残存率を示している. 平均すれば Case1 と Case2 の差は N1, N2, N3, N4 でそれぞれ 1.3%pt, 1.2%pt, 1.2%pt, 1.3%pt でほとんど違いはなかった. 個々の結果でみると、N2-3-1(N2-3 の No.1 ボルト)や N4-3-1 のように、その他の試験体より若干 Case1 と Case2 の差に違いが生じる場合も見られたが、それ以外は違いがほとんどなかった.

図 3-4-2 Case1 と Case2 の軸力残存率の比較(試験 I)

3-4-2 試験 || の試験結果

a) 軸力導入初期(最大値, 30秒後)の計測結果

表 3-4-3 に試験 II の軸力導入初期におけるボルト軸力計測結果を示す.軸力導入時(最大値)のボルト軸力は,設計値比率の平均値で示すと、P1、P2 でそれぞれ、114%、110%であり、P2 は想定通りであったが、P1 は想定より高い軸力が導入された. 30 秒後にはそれぞれ 112%、108%に低下し、低下する軸力で示すと P1、P2 でそれぞれ 3.3kN、4.7kN と厚膜の P1 の方が低下値は小さかった.3-4-2 b)でも示すが、長期のリラクセーションによる軸力低下は膜厚が厚い方が大きくなるが⁴⁾、軸力導入時から 30 秒後(短期)ではその逆の結果となった.これは P1-1 の 2 本のボルトで軸力低下が極端に低く、これを除けば薄膜と同等であり、膜厚の影響ではなく、ばらつきの範囲と考えるのが妥当である.また、軸力残存率で示すと P1 で 98.6%、P2 では 97.9%となった.なお、標準偏差は P2 の方が若干大きいが、大きな違いではなかった.

表 3-4-3	軸力導入初期でのボルト軸力計測結果と30 秒のリラ	クセーション	による軸力低	氏下の影響(試験 II)

試験	体					ホル	▶軸力													
分類	名称		軸力導	【入時(損 N _a [kN	最大値)]				30秒後 N _b [kN]]			軸力位 30秒後	氐下值 & [kN]			軸 30	力残存 秒後 [ˈ	·率 %]	
		ボル	ŀNo.	亚齿	記卦庙	とえ(1/)	ボルトNo.		亚齿	凯乱枯	よう(を)	ボル	ŀNo.	ज	杤	ボル	ŀNo.	्रार	*	標準
		No.1	No.2	平均	設計値比率(%)		No.1	No.2	+13	成可阻	レニキャ(70)	No.1	No.2	4	1-1	No.1	No.2	+	1-1	偏差
無機	P1-1	236.8	235.5	236.1	115.2		236.0	234.8	235.4	114.8		0.7	0.7	0.7		99.7	99.7	99.7		
ジンク	P1-2	233.9	234.8	234.3	114.3	113.8	229.1	228.5	228.8	111.6	112.2	4.8	6.3	5.5	3.3	97.9	97.3	97.6	98.6	0.96
(厚膜)	P1-3	231.6	227.4	229.5	112.0		228.0	223.6	225.8	110.2		3.6	3.8	3.7		98.4	98.3	98.4		
無機	P2-1	-	223.4	223.4	109.0		-	222.5	222.5	108.6		-	0.9	0.9		1	99.6	99.6		
ジンク	P2-2	224.4	222.9	223.6	109.1	109.5	221.6	216.2	218.9	106.8	107.5	2.8	6.6	4.7	4.7	98.8	97.0	97.9	97.9	1.21
(薄膜)	P2-3	225.7	227.0	226.4	110.4		218.4	221.2	219.8	19.8 107.2		7.3	5.9	6.6		96.8	97.4	97.1		

b) 軸力導入時から 672 時間後の残存軸力の計測結果

表 3-4-4 には軸力導入時から 672 時間後の残存軸力を示す. 672 時間後の残存軸力は,設計値比率の 平均値で示すと, P1, P2 でそれぞれ 98.4%, 96.2%まで低下し,両者ともに設計ボルト軸力を下回った. 軸力低下値は, Casel では P1, P2 でそれぞれ 30.4kN, 27.0kN と膜厚が厚いとリラクセーションによる軸 力低下が大きく,軸力残存率においてもそれぞれ 87.0%, 88.0%と膜厚の影響が生じた. 一方, Case2 の 軸力残存率は, P1, P2 でそれぞれ 87.9%, 89.9%であり, Casel に比べ P1 で平均 0.9%pt, P2 では 1.9%pt, Casel の方が軸力残存率は低くかった.

	672	時間後	(28日後)の		Case1(初期値る	を最大値	直とし	と場合)		Case2(∤	の期値を	E30秒後	後とし	た場合))	軸力	残友率	の差
試験 体名		ボル N _c	卜軸力 [kN]	,	軸 672日	力低下 時間後	値 [kN]		軸力列 672 時間	浅存率 引後 [%	9]	軸 672日	力低下 時間後	値 [kN]		軸力列 672 時間	浅存率 引後 [%]	(Case2-Ca [%pt		sel)
41	ボル	⊦No.	凯乱枯	とを(1)	ボル	ボルトNo.		広内 ボルトNo.		亚杨	標準	ボル	ŀNo.	可ち	ボル	ŀNo.	TT 1/3	標準	ボル	⊦No.	₩¥1
	No.1	No.2		比平(%)	No.1	No.2	平均	No.1	No.2	平均	偏差	No.1	No.2	平均	No.1	No.2	平均	偏差	No.1	No.2	平均
P1-1	210.7	211.5	103.0		26.1	24.0		89.0	89.8			25.4	23.3		89.2	90.1			0.27	0.27	1
P1-2	197.6	-	96.4	98.4	36.2	-	30.4	84.5	-	87.0	2.76	31.4	-	27.9	86.3	-	87.9	2.02	1.77	-	0.91
P1-3	196.4	-	95.8	1	35.2	-		84.8	-			31.6	-		86.1	-			1.34	-	ĺ
P2-1	-	194.4	94.8		-	29.0		-	87.0			-	28.1		-	87.4			-	0.36	
P2-2	200.0	198.7	97.2	96.2	24.4	24.2	27.0	89.1	89.1	88.0	1.16	21.6	17.6	22.3	90.2	91.9	89.9	1.64	1.11	2.74	1.88
P2-3	195 5	199.8	964	1	30.2	27.2]	86.6	88.0]		22.9	21.4	1	89.5	90.3			2.88	233	i

表 3-4-4 672 時間後の残存軸力計測結果と672 時間後のリラクセーションによる軸力低下の影響(試験 II)

図 3-4-3 は、Case1 と Case2 の軸力残存率を比較したものである. P2-2-2 や P2-3 のように Case1 と Case2 の差が大きい場合も見られたが、特異なデータは見られず、その他のデータに大きな違いは見られなかった.

図 3-4-3 Case1 と Case2 の軸力残存率の比較(試験 II)

3-4-3 試験 III の試験結果

a) 軸力導入初期(最大値, 30 秒後)の計測結果

表 3-4-5 に試験 III の軸力導入初期におけるボルト軸力計測結果を示す.軸力導入時(最大値)のボ ルト軸力は,設計値比率の平均値で示すと110%~113%の範囲にあり,概ね想定した軸力が導入された. 30 秒後には P, R, B, G でそれぞれ108%,111%,109%,111%に低下し,低下する軸力で示すとそれぞれ 4.3kN, 3.8kN, 4.4kN, 2.4%であった.以前に著者ら^{4),5),6}は,粗面状態(赤さび,ブラスト)における長 期リラクセーションによる軸力の低下は,無機ジンクより小さくなることを示したが(3-4-3 b)でも同 様),軸力導入初期では G のみ低下値が小さく,それ以外大きな違いはみられなかった.また,特異な データが各試験体で見られ, P-3-1 では軸力低下が9.9kN と大きいデータも見られた.同様に, R-2-1 で は 10.3kN, B-1-2 では13.3kN, G-2-2 においても5.9kN の低下と同じ試験体内で大きな違いが生じ,試 験 I 等では見らなかった特異なデータが見られた.軸力残存率の平均値は,98.1%~99.0%の範囲にあっ た.

試験	体					ボル	、軸力													
分類	名称		軸力導入時(最大値) <i>N_a</i> [kN]						30秒後 N _b [kN]	l			軸力位 30秒後	氐下値 & [kN]			軸 30	力残存 秒後 ['	率 %]	
		ボル	ŀNo.	亚均	設計値	⊬索(%)	ボル	'⊦No.	亚均	設計値	⊬索(%)	ボル	ŀNo.	亚	圴	ボルトNo.		亚均		標準
		No.1	No.2	1~0	民日回	FU(/0)	No.1	No.2	1~0	페미제	20	No.1	No.2	1	~~)	No.1	No.2		~~)	偏差
400.46%	P-1	225.3	224.4	224.9	109.7		223.1	222.2	222.7	108.6		2.2	2.2	2.2		99.0	99.0	99.0		
ポパ残	P-2	225.1	226.3	225.7	110.1	109.7	222.2	221.3	221.8	108.2	107.6	2.9	5.0	3.9	4.3	98.7	97.8	98.2	98.1	1.28
229	P-3	227.4	220.6	224.0	109.3		217.5	216.8	217.2	105.9		9.9	3.8	6.8		95.6	98.3	96.9		
	R-1	232.9	229.8	231.4	112.9		232.4	227.4	229.9	112.1		0.5	2.4	1.5		99.8	99.0	99.4		
赤さび	R-2	232.7	235.0	233.9	114.1	113.1	222.4	233.7	228.1	111.2	111.3	10.3	1.3	5.8	3.8	95.6	99.4	97.5	98.4	1.51
	R-3	239.3	221.7	230.5	112.4		235.6	217.3	226.5	110.5		3.7	4.4	4.1		98.5	98.0	98.2		
	B-1	224.4	240.1	232.3	113.3		222.7	226.8	224.8	109.6		1.7	13.3	7.5		99.2	94.5	96.8		
ブラスト	B-2	226.2	233.9	230.1	112.2	111.5	224.8	229.5	227.2	110.8	109.4	1.4	4.4	2.9	4.4	99.4	98.1	98.7	98.1	1.90
	B-3	221.5	225.3	223.4	109.0		217.2	224.1	220.7	107.6		4.3	1.2	2.8		98.1	99.5	98.8		
ドーム	G-1	230.2	236.1	233.2	113.7		226.1	234.4	230.3	112.3		4.1	1.7	2.9		98.2	99.3	98.8		
クワイン	G-2	229.0	229.1	229.1	111.7	111.9	229.0	223.2	226.1	110.3	110.7	0.0	5.9	3.0	2.4	100.0	97.4	98.7	99.0	0.97
2-	G-3	225.3	226.7	226.0	110.2		223.2	226.1	224.7	109.6	I	2.1	0.6	1.4		99.1	99.7	99.4		

表 3-4-5 軸力導入初期でのボルト軸力計測結果と30秒のリラクセーションによる軸力低下の影響(試験 III)
b) 軸力導入時から 672 時間後の残存軸力の計測結果

表 3-4-6 に軸力導入時から 672 時間後の残存軸力を示す. 672 時間後の残存軸力は,設計値比率の平均値で示すと, P, R, B, G でそれぞれ 96%, 105%, 103%, 107%となり, P では設計ボルト軸力を下回った. これらの結果に示すように(試験 II の結果も含め),無機ジンクは軸力低下が大きく,著者ら^{4),5),6}は, 導入軸力は設計ボルト軸力の 15%増しがよいことを示した.

Casel において, 軸力低下は, P, R, B, G でそれぞれ 29.7kN, 14.9kN, 19.3kN, 12.1kN (P>B>R>G) と なり, 摩擦面によりリラクセーションによる軸力低下が異なった. 軸力残存率で示すと P, R, B, G でそ れぞれ 86.8%, 93.5%, 91.6%, 94.8%となった. 一方, Case2 の軸力残存率は, P, R, B, G でそれぞれ 88.6%, 95.2%, 93.6%, 95.4%, Case1 に比べ軸力残存率は平均 0.66~1.98%pt の範囲で Case1 の方が軸力残存率は 小さかった.

表 3-4-6 672 時間後の軸力計測結果と 672 時間後のリラクセーションによる軸力低下の影響(試験 III)

	(7)	ND+ 88.44			Casel(初期値を最大値とした場合))		Case2(初期值初	を30秒後	きとし	た場合)	献も確ち変の辛		
試験 体名	0/2	2時间後 ボル N _c	(28日夜 ト軸力 [kN]	.) ()	軸 672日	力低下 時間後	値 [kN]		軸力列 672 時間	曵存率 引後 [%]	輔 672	軸力低下値 672 時間後 [kN]			軸力列 672 時間	隽存率 引後 [%]	ー 町万残存率の差 (Case2-Case1) [%pt]		の走 sel)
441	ボル	∱No.	迎封枯	ドレ 家 (w)	ボルトNo.		亚齿	ボルトNo.		亚齿	標準	ボル	∕⊦No.	亚齿	ボル	小No.	亚齿	標準	ボル	⊦No.	可大
	No.1	No.2	以可旧	,16年(70)	No.1	No.2	干均	No.1	No.2	十均	偏差	No.1	No.2	十均	No.1	No.2	平均	偏差	No.1	No.2	十均
P-1	201.4	203.5	98.8		23.9	20.9		89.4	90.7			21.7	18.7		90.3	91.6			0.88	0.90	ļ
P-2	-	205.9	100.4	96.1	-	20.4	29.7	-	91.0	86.8	5.07	-	15.4	25.1	-	93.0	88.6	4.74	-	2.06	1.80
P-3	188.8	176.0	89.0		38.6	44.6		83.0	79.8			28.7	40.8		86.8	81.2			3.78	1.40	
R-1	-	-	-		-	-		-	-			-	-		-	-			-	-	
R-2	-	-	-	105.2	-	-	14.9	-	-	93.5	1.30	-	-	10.8	-	-	95.2	1.02	-	-	1.68
R-3	226.0	205.3	105.2		13.3	16.4		94.4	92.6			9.6	12.0		95.9	94.5			1.48	1.88	ſ
B-1	-	214.4	104.6		-	25.7		-	89.3			-	12.4		-	94.5			-	5.24	
B-2	211.8	215.4	104.2	102.8	14.4	18.5	19.3	93.6	92.1	91.6	1.56	13.0	14.1	14.4	94.2	93.9	93.6	0.95	0.58	1.77	1.98
B-3	202.4	206.5	99.7		19.1	18.8		91.4	91.7			14.8	17.6		93.2	92.1			1.81	0.49	[
G-1	217.5	217.9	106.2		12.7	18.2		94.5	92.3			8.6	16.5		96.2	93.0			1.71	0.67	
G-2	221.3	-	108.0	106.7	7.7	-	12.1	96.6	-	94.8	1.87	7.7	-	10.5	96.6	-	95.4	1.67	0.00	-	0.66
G-3	-	216.9	105.8		-	9.8		-	95.7			-	9.2		-	95.9			-	0.25	

図 3-4-4 は, 試験 III における Case1 と Case2 の軸力残存率を比較したものである. G では平均すれば Case1 と Case2 の差は 0.7%pt と特に小さく, P, R, B ではそれぞれ, 1.8%pt, 1.7%pt, 2.0%pt であり, 特に B-1-1 では差が大きかった. また, 表 3-4-6 に示す標準偏差は, いずれの試験体においても, Case2 より Case1 の方が大きかった.

図 3-4-4 Case1 と Case2 の軸力残存率の比較(試験 III)

3-5 既存データも含めた初期値の影響の分析

3-5-1 軸力導入初期(30秒間)の軸力低下の影響

本節では,前節で示した試験 I~III の試験結果に,著者らが以前に実施した試験結果^{3),7),8)}も加え,初 期値の設定方法による影響を明確にすることとした.

図 3-5-1 は、本試験結果および過去の試験結果^{3),7),8)}における軸力導入時から 30 秒間の軸力低下値を 示し、表 3-5-1 にはこれらの集計結果を示す.図 3-5-1(a)は無機ジンク以外の摩擦面、図 3-5-1(b)は無 機ジンクにおける軸力低下値を縦軸に、横軸には軸力導入時の軸力(初期導入軸力)を示している.ま た、図中には各摩擦面の回帰直線を実線で示しており、本試験データと重複している過去の試験結果(赤 錆、ブラスト、無機ジンク(標準))については点線で示している.図 3-5-1(c)は無機ジンクにおけるボ ルト長の影響を確認するため横軸をボルト長で示し、図 3-5-1(d)は無機ジンクの頻度分布を示す.なお、 無機ジンク以外はすべてボルト長が 85mm であり、ボルト長との関係は示しておらず、またデータ数量 も少ないので頻度分布を示すことができないことはご了承いただきたい.

表 3-5-1 軸力導入時から 30 秒間の集計結果

	数	30秒間	同の軸力)低下値	í(kN)	30秒後の軸力残存率(%)						
摩擦面	<u>《</u> 量	最小値	最大値	平均値	標準 偏差	最小値	最大値	平均値	標準 偏差			
赤錆	12	0.5	10.3	3.7	3.02	95.6	99.8	98.4	1.30			
ブラスト	11	0.2	13.3	3.1	3.59	94.5	99.1	98.7	1.49			
グラインダー	6	0.0	5.9	2.4	2.23	97.4	100.0	99.0	0.97			
有機ジンク	5	1.3	3.5	2.6	0.85	98.5	99.4	98.9	0.36			
薬品錆	5	0.3	4.1	2.5	1.42	98.2	99.9	98.9	0.63			
溶射	6	7.0	17.9	11.6	4.22	92.0	96.8	94.7	1.80			
無機ジンク	115	0.4	9.9	3.5	1.96	95.7	99.9	98.6	0.82			

図 3-5-1(a)に示すように、回帰直線の傾きは赤錆(試験 III)を除けば右肩上がりであった。特に、ブ ラスト(試験 III)および溶射(文献 8)では傾きが大きかった。前者では1つのデータで極端に軸力低 下の大きいデータが存在したからであり偶然とも思われるが、後者はF8Tを使用しており⁸⁾、軸力低下 が大きいデータは導入軸力が高く、ボルトが塑性域に入ったことにより傾きが大きくなったものと考え られる. なお,導入軸力が及ぼす影響については,文献 5)でも同様の結果を示した. これは長期のリラ クセーションによる軸力低下であるが,軸力導入初期(30秒間)でもその影響が生じることが明らかと なった.また,軸力低下値も摩擦面によって若干異なり,その傾向は長期リラクセーション試験結果^{6),7),8)} と同様であった.

図 3-5-1(b)において、文献データではばらつきが生じ、回帰直線の傾きはむしろ右肩下りの傾向を示したが、本試験の試験 I(標準)と試験 II, III(薄膜)では右肩上がりであった. 無機ジンクの軸力低下の平均値は 3.5kN であり、道示や鉄道標準で示されている粗面状態(赤錆、ブラスト)や無機ジンクでは、軸力低下値は 3.1~3.7kN の範囲にあり、摩擦面による軸力低下に大きな違いは生じなかった.

図 3-5-1(c)はボルト長との関係を示す.回帰直線の傾きは右肩下りでボルト長が長くなれば,軸力低下が小さくなることが示された.長期リラクセーションによるボルト長(板厚)の影響については文献 9)で示したが,軸力導入初期でも同様の軸力低下傾向が見られた.

図 3-5-1(d)は無機ジンクの頻度分布を示す.厚膜や薄膜では頻度も少なく,ばらつきが生じている. 一方,標準膜厚では 1.5kN をピークとする釣り鐘型の分布であり,ピークは平均値より低い位置にあった.

軸力導入時から 30 秒後の軸力残存率の集計結果は表 3-5-1 に示している.表 3-5-1 に示すように, 軸力残存率は溶射では 94.7%とその他の摩擦面より低かったが,これを除けば 98.4~99.0%の範囲にあ り,摩擦面により軸力残存率に大きな違いは見られなかった.

3-5-2 初期値の違いによる 672 時間後の軸力残存率の差

本項では、初期値の違いが試験結果に及ぼす影響を定量的に評価するため、672 時間後の軸力残存率 の違いを示すこととした.ここでは、表 3-4-2、表 3-4-4、表 3-4-6 で示した軸力導入時を初期値とし た Case1 と 30 秒後を初期値とした Case2 の軸力残存率の差を示し、初期値の影響を明確にすることとし た.なお、表 3-4-2 に示す試験 I では 558 時間後の軸力残存率であるが、試験 II、III との整合性をとる ため、試験 I では図 3-4-1 で示した回帰直線から 672 時間後の軸力残存率に補正した値で比較した.同 様に文献データについても、文献 7)、10)で示した回帰直線を用いて軸力残存率を補正し、すべてのデー タを 672 時間後の補正値で比較検討した.

図 3-5-2(a),(b),(c)は, 672 時間後の Casel と Case2 の軸力残存率の差(以下,残存率差)を縦軸に示し, 表 3-5-2 はこれらの集計結果を示している.

図 3-5-2(a)は無機ジンク以外の摩擦面における初期導入軸力との関係を示す.なお,赤錆(試験 III) は表 3-4-6 で示したように計測の不具合により2データしか取れなかったので回帰直線は示していない. 図 3-5-2(a)に示すように,縦軸は図 3-5-1(a)と異なるものの,各データの分布状態や回帰直線はこれと ほぼ同じであり,初期の軸力低下値の影響が672時間後の残存率差に表れることが判る.表 3-5-2 で示 す残存率差の平均値は,グラインダーでは0.66%ptと小さく,逆に溶射では4.41%ptと大きく,これら を除けば1.05~1.49%ptの範囲にあり,摩擦面による残存率差に大きな違いは見られなかった.

図 3-5-2(b)は無機ジンクの試験結果であるが,試験 I の回帰直線の傾きはほとんどなく,それ以外は 図 3-5-1(b)と同様であった.残存率差の平均値は 1.2%pt であり,図 3-5-2(a)で示したその他の摩擦面(グ ラインダー,溶射を除く)と大きな違いは見られなかった.

図 3-5-2(c)は無機ジンクにおけるボルト長との関係を示すが、回帰直線の傾きは右肩下りでボルト長

が大きくなれば、残存率差は小さくなった(図 3-5-1(c)と同様).

図 3-5-2(d)は無機ジンクの頻度分布を示すが,標準膜厚では 0.6%pt をピークとする分布であり,この 箇所のみ吐出した分布状態であるが, 1.3~1.5%pt をピークとするなだらかな凸形の分布であった.

残存率差(%pt) Case2 影響度 摩擦面 数量 軸力残存率 標準 (%) 最小値 最大値 平均値 平均値(%) 偏差 1.48 0.25 3.36 93.5 22.9 8 赤錆 1.553 0.09 5.24 1.38 95.1 27.9 ブラスト 9 0.7551.71 95.5 14.6 グラインダ 4 0.000.66 5 0 3 3 8 0.56 1 4 4 1.05 94 4 18.8 有機 0.608 0.12 1.79 1.05 96.3 28.25 薬品錆 1.513 6.69 4.41 83.5 26.6 2.68 6 溶射 105 0.716 0.14 3.78 91.0 13.4 無機 1.21

表 3-5-2 残存率差とその影響度(率)の集計結果

3-5-3 摩擦面の違いによる残存率差が及ぼす影響度

前項で示したように、摩擦面の違いによる残存率差は小さく、赤錆、ブラストおよび無機ジンクでは、 残存率差はそれぞれ 1.48%pt,1.38%pt,1.21%pt であり大きな違いは見られなかった.本項ではこれらの残 存率差が、摩擦面の違いによるリラクセーション試験結果に及ぼす影響を定量的に評価することとした.

表 3-5-2 には Case2 の 672 時間後の軸力残存率およびその影響度(率)を示している. ここで示す影響度は, Case2 の軸力低下率(100-軸力残存率)に対する残存率差の割合である. これらの結果に示すように,赤錆やブラストでは軸力残存率は無機ジンクより高く,残存率差の違いが少なくても影響度が大きいことが判る.赤錆,ブラストおよび無機ジンクの影響度はそれぞれ,22.9%,27.9%,13.4%であり,言い換えると,初期値を軸力導入時とするのか,あるいは 30 秒後とするのかにより,リラクセーション試験結果が,例えば,ブラストでは27.9%の違いが生じることを意味する. なお,最も残存率差が大きかったのは溶射(4.41%)であったが,溶射は 672 時間後の軸力低下も大きく,影響度は26.9%であり,影響度が最も高かったのは軸力残存率が最も高い薬品錆(28.2%)であった.

注)影響度は Case2 の軸力低下率(100-残存軸力率)に対する残存率差の割合

3-5-4 軸力導入時のボルト軸力と軸力残存率

前項では,軸力導入時と 30 秒後との残存率差を示したが,その間,いつの時点の影響が大きいのか, あるいはどのようなばらつきが生じるのかは不明であった.そこで,軸力導入時から 10 秒毎に自動計 測を行った試験 II,試験 III および文献 7)のデータを対象に,軸力導入時(N₀), 10 秒後(N₁₀), 20 秒後(N₂₀) および 30 秒後(N₁₀)の軸力の推移および軸力残存率を示すこととした.

図 3-5-3 にこれらの結果を示す. 図に示すように, 10 秒後までに一気に軸力が低下する場合や 10 秒 後より 20 秒後の方が軸力は高くなる場合など特異なケースもあったが,多くのデータは時間の経過と 伴い軸力は低下し,10 秒後までの軸力低下が大きく,10 秒後からは緩やかに軸力が低下していた. また,10 秒までの軸力低下にばらつきが生じていた.

図 3-5-3 軸力導入初期(No:0 秒後, No:10 秒後, No:20 秒, No:30 秒後)におけるボルト軸力と軸力残存率

3-5-5 初期値の設定の違いによるばらつきの影響

672 時間後の軸力残存率は,表 3-4-4, 3-4-6 で示したように, Case1(N₀)と Case2(N₃₀)を比較すれば, 多くのデータで Case1 の標準偏差の方が高かった.そこで,本項では,初期値の設定方法に違いによる 試験結果のばらつきを明確にすることとした.

図 3-5-4 には、図 3-5-3 で示した試験データにおける N₀, N₁₀, N₂₀ および N₃₀ を初期値とした 672 時間後の軸力残存率の標準偏差を示す.ここで示す標準偏差は表 3-4-4,表 3-4-6 で示した Case1(N₀)およ

び Case2(N₃₀)であり,同様に,N₁₀および N₂₀についても算定し,さらに,文献 7)データの軸力残存率の 標準偏差を加えたものである.図 3-5-4 に示すように,赤錆や無機ジンクの P2 のように傾向が不明な ケースもあったが,その他のケースでは右肩下りの傾向が示された.これらの結果に示すように,初期 値を遅く設定した方が,リラクセーション試験結果のばらつきは小さくなることが示された.

3-6 リラクセーション試験の初期値のあり方

3-6-1 初期値の設定が試験結果に及ぼす影響の考察

前節の 3-5-4 では, 締付け後 10 秒間の軸力低下の影響は大きいことを示した.本節では, この 10 秒間の影響を詳細に示した上で, リラクセーション試験の初期値のあり方を考察することとした.

図 3-6-1 に試験 II で実施した動ひずみ計測による締付け直後から 120 秒間の軸力計測結果を示す.図 3-6-1(a)は締付け直後(0 秒)を初期値とした軸力残存率を縦軸に示したものであり,図 3-6-1(b)は締付け から 1 秒後を初期値とした場合,同様に,図 3-6-1(c)(d)(e)(f)はそれぞれ,2 秒後,3 秒後,10 秒後,30 秒後を初期値とし,その初期値から 120 秒後の軸力残存率を示している.なお,P2-1 において,締付け から 14 秒から 23 秒間はひずみにノイズが入り,ひずみに特異性が発生したので,この間は直線分布で 示している.また,表 3-6-1 は,図 3-6-1 で示した各経過時間における軸力残存率の4本の平均値を示し,その標準偏差も示している.

図 3-6-1(a)に示すように, 締付け直後を初期値とした場合, 締付けから 3 秒までの軸力低下が大きかった. 特に1 秒までの軸力低下が大きく, 軸力残存率の平均値で示せば 99.1%(0.9%低下)であった. 120 秒後には軸力残存率は平均で 95.1%となり, P2-1 では 93.6%となった. また, ばらつきも大きいが, これは, 1 秒までの軸力低下でのばらつきが大きいことがその後の軸力残存率のばらつきの要因になったと考えられる.

図 3-6-1(b)は1 秒後を初期値とした軸力残存率を示すが、図 3-6-1(a)と比較して軸力低下の状況は異なり、わずか1 秒の違いであるがその影響は大きいことが判る. 120 秒後の軸力残存率は 96.1%と、図 3-6-1(a)の結果(95.1%)と比較すると1%の違いが生じる結果となった.

さらに、図 3-6-1(c),(d),(e)はそれぞれ初期値の設定秒数を変更させた結果を順に示しており、順に軸

力変動のばらつきや120秒後の軸力残存率も小さくなっていることが判る.特に,図3-6-1(d)の3秒後 以降は,その直後の軸力残存率のばらつきは小さく,軸力変動も安定していることが判る.図3-6-1(f) は30秒後を初期値とした結果であるが,締付け直後(0秒)の図3-6-1(a)とは分布状態が大きく異なって おり,軸力残存率の違いで示すと,図3-6-1(f)では120秒後の軸力残存率は98.5%となり,図3-6-1(a) の結果(95.1%)と比較すると3.4%の違いが生じる結果となった.ただし,30秒後を初期値とした場合, その後の5秒間は軸力残存率の低下は非常に小さく安定した状態であり,また,ばらつき(標準偏差) は小さくなることは事実である.これらのことから,これまで30秒後等,ある程度時間を経過した時 点をリラクセーション試験の初期値とする場合が多かったものと考えられる.

表 3-6-1 各初期値のおける各経過時間での軸力残存率の平均値および標準偏差 (単位:%)

	1利	後	2利	後後	3利	後	10利	少後	20利	少後	30利	少後	1207	砂後	
初期値	平均	標準	平均	標準	平均	標準	平均	標準	平均	標準	平均	標準	平均	標準	備考
	値	偏差	値	偏差	値	偏差	値	偏差	値	偏差	値	偏差	値	偏差	
0秒後	99.1	0.367	98.6	0.449	98.4	0.467	97.3	0.613	96.8	0.824	96.4	0.859	95.1	1.158	図-3-6-1(a)
1秒後	99.5	0.156	99.3	0.287	99.2	0.257	98.2	0.551	98.1	0.609	97.3	0.766	96.1	1.199	図-3-6-1(b)
2秒後	99.8	0.166	99.6	0.151	99.5	0.246	98.6	0.457	98.2	0.332	97.7	0.650	96.5	1.084	図-3-6-1(c)
3秒後	99.9	0.099	99.7	0.111	99.4	0.282	98.9	0.254	98.4	0.301	97.9	0.458	96.8	0.978	図-3-6-1(d)
10秒後	99.9	0.105	99.8	0.185	99.9	0.234	99.9	0.735	99.0	0.334	98.7	0.503	97.8	0.994	図-3-6-1(e)
30秒後	100.0	0.027	99.9	0.102	99.9	0.073	99.7	0.194	99.5	0.197	99.4	0.293	98.5	0.568	図-3-6-1(f)

図 3-6-1 動ひずみ計測結果に基づく初期値の設定の違い(0,1,2,3,10,30 秒後)による 120 秒後の軸力残存率

3-6-2 リラクセーション試験の初期値のあり方の考察

前項の 3-6-1 で示したように、リラクセーションによる軸力低下が最も大きいのは締付けから 1 秒間 であり、また、軸力低下のばらつきも大きかった.ただし、本来のボルトのリラクセーションは、締付 け直後を初期値とした図 3-6-1(a)の軸力変動挙動であると考えられ、図 3-6-1(f)の 30 秒後を初期値とし た挙動とは大きく異なったが、現状では後者の挙動でリラクセーションを評価する場合が多いのも事実 である.

しかしながら、0 秒後を初期値とすれば、ばらつきが過大であるとも言え、1,2 秒後を初期値とした 場合では多少であるがばらつきは改善され、図 3-6-1(d)の 3 秒後では P2-1 を除けば、大きく改善されて いることが判り、表 3-6-1 で示す標準偏差においても小さくなっていた. 試験 I の Casel はこの 3 秒後 を初期値とした結果であり、30 秒後を初期値とした Case2 と比較しても、ばらつきの違いもほとんどみ られず、標準偏差で判断すれば、むしろ Case1 の方が低かった(表 3-4-2).

以上のことから考えると,締付け直後の軸力低下の影響および試験結果のばらつきを抑えることに配 慮し,リラクセーション試験の初期値は締付け3秒後とすることを推奨する.なお,従来から適用して いる 30 秒後を初期値とする場合には,表 3-5-2 で示した初期の軸力低下の影響を考慮した上で試験を 実施する必要があると考えられる.また,今後,リラクセーション試験結果を報告する際,初期値の設 定方法を示すことが重要であると考えられる

3-7 結 論

本研究は、リラクセーション試験における初期値の設定方法が試験結果に及ぼす影響を明確にし、初 期値のあり方を示すことを目的とした研究である.本研究から得られた主な結論は、以下の通りである.

- (1) 導入軸力が高くなれば、軸力導入時から 30 秒間の軸力低下は大きくなった.ただし、導入軸力に比例した軸力低下値となり、軸力残存率に違いは見られなかった.
- (2) 無機ジンクを施した継手において, 軸力導入時から 30 秒間の軸力低下における膜厚の影響は確認で きなかった.また, ボルト長が長くなれば軸力低下は小さくなった.
- (3) 軸力導入時から 30 秒間の軸力低下は,黒皮を除去した粗面状態(赤錆,ブラスト)および無機ジン クにおいて,赤錆で 3.7kN,ブラストで 3.1kN,無機ジンクでは 3.5kN の軸力低下(表 3-5-1)とな り,摩擦面によって若干異なるが大きな違いではなかった.ただし,グラインダーと溶射を除く.
- (4) 初期値を軸力導入時とした Case1 と 30 秒後とした Case2 における 672 時間後の軸力残存率の差は、 赤錆で 1.48%pt、ブラストで 1.38%pt、無機ジンクでは 1.21%pt であり、摩擦面による大きな違いは なかった.ただし、672 時間後の軸力残存率は摩擦面によって異なり、Case1 と Case2 の試験結果の 違いを示す影響度は、赤錆で 22.9%、ブラストで 27.9%、無機ジンクでは 13.4%となった.これは、 赤錆やブラストのようにリラクセーションによる軸力低下が小さい場合では影響度は高くなり(表 3-5-2)、初期値を軸力導入時とするのか、あるいは 30 秒後とするのかにより、リラクセーション試 験結果はブラストでは 27.9%の違いが生じることとなる.
- (5) 初期値を締付け直後(0秒後)とした場合, 締付けから3秒までの軸力低下が大きく, 特に1秒までの軸力低下が顕著であり,1秒間の軸力低下率は0.9%, 120秒後には4.9%まで低下した. 初期値を30秒後とすれば,その直後の軸力低下は小さく120秒後でも1.5%(軸力低下率)となり,初期値の設定法の違いによって軸力低下挙動は大きく異なった(図3-6-1).

(6) 初期の軸力低下の影響および試験結果のばらつきを抑えることに配慮し、リラクセーション試験の 初期値は締付け3秒後とすることを推奨する.なお、従来から適用していた30秒後を初期値とする 場合には、結論(4)で示した初期の軸力低下の影響(表 3-5-2)を考慮した上で、試験を実施する必 要があると考えられる.また、今後、リラクセーション試験結果を報告する際、初期値の設定方法 を示すことが重要であると考えられる.

参考文献

- 1) 日本道路協会:道路橋示方書·同解説-II 鋼橋·鋼部材編, 2017.11.
- 2) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説(鋼·合成構造物), 2009.7.
- 3) 白旗弘実,南邦明,藤野大地,宮井大輔,矢野将太,横田渉:F10Tを用いた高力ボルト摩擦接合 継手におけるナット回転角法の適用の検討,土木学会論文集A1, Vol. 76, No. 1, pp. 1-14, 2020.1.
- 4) 南 邦明:厚膜型無機ジンクリッチペイントを施した摩擦面で 15%増し締めした高力ボルト試験, 土木学会論文集 A1, Vol.73, No.1, pp.32-39, 2017.1
- 5) 南 邦明:厚膜型無機ジンクリッチペイントを施した高力ボルト継手における導入軸力の影響の考察, 土木学会論文集 A1, Vol.74, No.1, pp.58-63, 2018.1.
- 6) 南邦明,田村洋,吉岡夏樹,内田大介,茂呂充,安藤光希:高力ボルト継手における摩擦面の数 に応じた導入ボルト軸力に関する検討,土木学会論文集 A1, Vol. 75, No. 1, pp. 46-57, 2019.2.
- 7) 南邦明,田村洋,白旗弘実,内田大介,吉岡夏樹,濱達矢:高力ボルト摩擦接合継手のすべり耐力試験におけるすべり発生時の変位量,土木学会論文集 A1, Vol. 75, No. 2, pp. 249-256, 2019.8.
- 8) 筒井康平,南邦明,横山秀喜,天野貴文,田村洋:表裏面で仕様の異なる摩擦面における高力ボルト摩擦接合継手のすべり挙動(土木学会論文集 A1 投稿中)
- 9) 南 邦明, 横山秀喜, 斉藤雅充, 村上貴紀: 厚膜型無機ジンクリッチペイントを施し 15%増し締め した高力ボルト継手に関する 2,3 の考察, 土木学会論文集 A1, Vol.75.No.2, pp.127-140, 2019.5.
- 10) 南邦明,横山秀喜,徳富恭彦,森井茂幸:亜鉛アルミ合金溶射を施した高力ボルト摩擦接合継手に
 関する研究,土木学会論文集 A1, Vol.74.No.3, pp.385-398, 2018.10.

4. 変位量によるすべり判定値の検討

4-1 概論

鋼橋における架設現場での部材の接合は,溶接接合を適用する場合もあるが,作業効率がよいボルト 接合が主流であり,これまで高力ボルト摩擦接合継手のすべり耐力試験は数多く行われてきた.

すべり耐力試験は、徐々に荷重を上げて行き、すべりが生じた時の荷重値をすべり耐力としている. その際、すべりの判定は、一般にすべった時に荷重が下がり変位が大きくなった時としている.多くの 試験体では、この方法ですべり耐力を判定することは可能である.ただし、荷重の低下がほとんどなく 変位が大きくなるケースもあり、その際のすべり時の判定方法は明確でなかったが、近年、変位量 0.2mm に達した時の荷重値をすべりと判定する場合もある.これは建築分野で推奨している判定方法¹⁾である が、建築鉄骨における摩擦面は赤錆が基本である.ただし、これまで摩擦面の違いによるすべり時の変 位量については明確にされてこなかった.

本研究は、摩擦面に応じた変位量によるすべり判断の目安値を提案することを目的に行った実験的研 究である.本実験では、摩擦面に無機ジンクリッチペイント(以下,無機ジンク)、ブラスト、赤錆、 有機ジンクリッチペイント(以下,有機ジンク)および錆促進剤で発錆させた錆(以下,薬品錆)を有 する高力ボルト摩擦接合試験体を作成した.これらを用いてすべり耐力試験を実施し、すべり時の変位 を計測した.また、既往の研究におけるすべり時の変位量も調べた上で、荷重の低下がほとんどなく変 位が大きくなるケースにおける変位量によるすべり判断の目安値を提案した.

4-2 試験体の説明

4-2-1 試験体の使用材料, 形状および種類

本試験で使用した鋼材および高力ボルトの材料特性をそれぞれ表 4-2-1,表 4-2-2 に示す. 試験体の 母板および添接板には SM490Y を使用した.使用ボルトは,六角ボルト F10T(M22)とし,首下長さ 85mm のボルトを用いた.

表 4-2-1 (使用鋼材の	機械的性質
-----------	-------	-------

	板厚	機	械的性質	
鋼種	(mm)	降伏強度	引張強度	伸び
	(mm)	(N/mm^2)	(N/mm^2)	(%)
SM490YA	12	430	519	23
SM490YB	19	437	530	23

表 4-2-2 使用ポルトの機械的性	E質と	- h	ルク	係数
--------------------	-----	-----	----	----

			ボルト			ボルト	ナット	座金	トルカ
笙狐	ポルト		4号試験月					下ルク	
守权	11/1/1	降伏強度	引張強度	伸び	絞り	T	r)	(亚均值)	
		(N/mm^2)	(N/mm^2)	(%)	(%)	15	(平均恒)		
F10T	M22×85	1049	1093	18	73	33	26	41	0.122

図 4-2-1 に試験体形状 (土木学会の標準試験片²⁾を使用) を示すが, β 値は, 設計ボルト軸力(205kN), 使用鋼材の降伏強度(437N/mm²), すべり係数を 0.40, 0.45 で算出(後に示す式(1)(2)を用いて) すれば, それぞれ 0.52 および 0.59 となる試験体である. なお, 試験体は固定側とすべり側を設定した. 試験体 の種類は, 摩擦面に無機ジンク(試験体 A), ブラスト(試験体 B), 赤錆(試験体 C), 有機ジンク(試 験体 D) および薬品錆(試験体 E) を施した 5 種類の試験体を用いた. 試験体は各種 3 体作成し, 合わ せて 15 体を試験に供した.

図 4-2-1 試験体形状

4-2-2 ボルトの締付け

ボルト締付けにおいて、一次締めは設計ボルト軸力の 60%、本締めは、設計ボルト軸力の 110%を目標に締付けた.なお、固定側(すべらせない側)のボルトについては、さらに 20kN 増し締めした.

4-2-3 摩擦面処理および粗さ・膜厚・錆厚の測定

摩擦面処理は,E試験体を除く試験体では,まず,グリッドブラストにて素地調整(ISO Sa2.5: 75µmRzjis 以下)を行った.その後,試験体 A,Dは,それぞれ無機ジンクおよび有機ジンクを標準膜厚 75µm 塗布 した.塗装後約1ヶ月間,工場内で乾燥させた(その後,試験場へ搬送し,約3ヶ月後に試験体を組み 立てた).また,試験体 Cは,自然錆を発錆させるため,約2ヶ月間,屋外で曝露した.E試験体では2 種ケレン相当の下地処理を行い,建築鉄骨で一般に使用する錆促進剤を2回塗り,その後,2日間室内 で乾燥させた.なお,C,E試験体は,錆発後,浮き錆をワイヤブラシで除去した.

摩擦面の状況を明確にさせるため、表面粗さおよび膜厚(錆厚)の計測を行った.粗さ計測は、表面 粗さ計(サーフテストSJ-210)を用いて、評価長8mmで十点平均粗さ(Rzjis)を求めた.測定位置は、図4-2-2 に示すようにボルト孔周辺とし、測定数は5種類の試験体に対し1体計測することとし、1つのボルト 孔に対し、母板および添接板の片面各4ヶ所とした.測定時期は、試験体A、Dは塗装後、試験体Bは ブラスト後、試験体C,Eは曝露後(発錆後)とした.次に、試験体Aで塗装膜厚、試験体C,Eでは錆 厚を測定することとし、膜厚(錆厚)測定は、渦電流式膜厚計(SWT9300)を用いて行った.測定位置は、 ボルト孔周辺の2ヶ所とした.

図 4-2-2 表面粗さおよび膜厚の計測位置

各試験体の表面粗さおよび膜厚(錆厚)測定結果を表 4-2-3 に示す.これらの結果は、各ボルト孔の 平均値を示している.粗さ計測結果の平均値は 7.86~35.2µm であった.膜厚測定結果において、無機ジ ンクおよび有機ジンクで大きな違いはなく、膜厚の平均値は 81.7~92.1µm であり、ばらつきは少なく、 目標の 75µm に対し 6.7~17.1µm 大きい値であった.また、錆厚の平均値は、赤錆で 56.8~63.7µm、薬 品錆では 17.3~21.4µm と両者で約 3 倍の違いが生じていた.

試験	試験体		表面粗さ		膜厚(C1,E1~C3,E3は錆厚)				
八米石	反称	粗さ	(µm]	亚坎荷	厚み	(µm)	亚坎荷		
刀狽	泊你	母板	添接板	平均旭	母板	添接板	平均旭		
4月13年	A1	19.6	19.5	19.6	81.9	83.3	82.6		
ジンク	A2				85.8	77.7	81.8		
	A3	—		—	79.1	86.8	82.9		
	B1	34.1	36.2	35.2	_	—	—		
ブラスト	B2	_		_	_	—	_		
	B3					—			
	C1	21.4	23.9	22.7	58.7	54.8	56.8		
赤錆	C2	_		_	58.9	68.4	63.7		
	C3	—		—	60.2	57.5	58.9		
古地影》	D1	7.11	8.60	7.86	86.1	98.0	92.1		
作版ン	D2	_		_	88.2	81.1	84.7		
~)	D3			_	82.3	81.0	81.7		
	E1	14.7	12.2	13.46	19.8	14.8	17.3		
薬品錆	E2			_	21.0	21.9	21.4		
	E3				22.6	19.0	20.8		

表 4-2-3 表面粗さおよび膜厚計測結果

4-3 すべり耐力試験

4-3-1 ボルト軸力の計測

導入軸力およびすべり耐力の評価を行うため、ボルト軸力を計測した.ボルト軸力は、計測したひず み値に鋼のヤング係数値を乗じることでも算出できるが、ボルトのヤング係数値の材料誤差あるいはボ ルト径の製造誤差が生じることもある.そこで、荷重とひずみの関係から換算率を求めるキャリブレー ション試験を実施した.その結果を図4-3-1に示す.ここでは3本のボルトで実施したが大きな違いは なく、その平均値でひずみからボルト軸力を算出するための換算率を求めた.

計測はすべり側のすべてのボルトに対して実施し、図 4-3-2 に示すように、ボルト軸部にひずみゲージを取り付け、それらのゲージ出力(ひずみ値)の平均値に換算率を乗じボルト軸力を算出した.その際、ボルト軸部のひずみゲージの位置は、試験体として組み立てた際に、母材板厚中央となるようにした.

4-3-2 すべり耐力試験方法

すべり耐力試験は、ボルト締付け後、672 時間(28日)経過後に実施した. 試験には載荷能力 1000kN の万能試験機を用い、試験体両端部をチャックで固定し、引張荷重を 2kN/s 程度の速度で主すべりが生 じるまで与えた. 試験時には、図 4-3-3 に示すように、No.1 ボルト(内側ボルト部)における母板と添 接板間の相対変位および母板間の変位を測定するため、クリップゲージを設置して測定した. 計測には 動ひずみアンプ(DPM-911B)を用い、0.01 秒毎に荷重と変位量を測定した.

すべり耐力は,継手部がすべった時に荷重が下がるか,あるいは下がらなくても添接板と母板の相対 変位等が大きくなったときの荷重とした.なお,荷重低下は,試験機の荷重計および動ひずみアンプの データ(荷重-変位の関係)から判断した.

図 4-3-3 変位計測位置

4-3-3 ボルト軸力計測結果

ボルト軸力計測結果およびすべり耐力試験結果を,表4-3-1に示す. 締付け軸力は,各試験体の平均 値において,設計ボルト軸力の110~113%であり,概ね想定通りの軸力が導入されていた. すべり試験 直前(672時間後)においては,各試験体の平均値は設計ボルト軸力の100%~110%,軸力残存率は89.9 ~96.9%と表面処理により大きく異なり,特に無機ジンクの残存軸力は小さかった.

34€	· /+·		ボルト軸力									市ナガ	まち家	すべり			+	n KT **+	
記入初失	2142		締付け	直後 1	V _a [kN]		試験	直前(6	72時間征	爰) N _b	[kN]	4回フリク 672 時	5日平 手間後	, 荷重P	すべり		9 7 1	の示数	
分稻	夕称	ボル	ŀNo.	亚均	設計値	直比率	ボル	ŀNo.	亚肉	設計	直比率	[9	6]	[kN]	音		5		
力救	-11 1/17	No.1	No.2	1-20	(9	%)	No.1	No.2	1-20	(9	%)					μ		μ	D
400-15%	A1	227.2	224.8	226.0	110.2		204.7	201.8	203.2	99.1	ļ	89.9		464		0.566		0.571	
ボウズ	A2	222.5	227.3	224.9	109.7	110.7	201.2	205.7	203.5	99.2	99.5	90.5	89.9	508	あり	0.619	0.597	0.624	0.599
129	A3	224.6	235.4	230.0	112.2		201.5	209.4	205.5	100.2		89.3		496		0.605		0.604	
ーバニ	B1	226.3	229.0	227.7	111.1		209.7	223.1	216.4	105.6		95.0		515		0.628		0.595	
77	B2	241.5	229.3	235.4	114.8	113.3	232.8	*	232.8	113.6	109.8	98.9	96.9	522	あり	0.637	0.655	0.560	0.597
	B3	239.0	228.1	233.5	113.9		229.9	222.2	226.0	110.3		96.8		575		0.702		0.636	[
	C1	230.9	236.2	233.5	113.9		216.6	219.9	218.2	106.5		93.4		642		0.783		0.736	
赤錆	C2	221.2	227.4	224.3	109.4	112.7	206.1	212.5	209.3	102.1	104.8	93.3	93.0	633	あり	0.771	0.780	0.756	0.745
	C3	239.0	231.7	235.3	114.8		217.2	216.2	216.7	105.7		92.1		644		0.786		0.743	
	D1	225.0	220.8	222.9	108.7		207.2	207.8	207.5	101.2		93.1		263		0.321		0.317	
月機	D2	223.4	219.9	221.6	108.1	110.9	211.7	209.4	210.5	102.7	104.8	95.0	94.4	262	なし	0.320	0.311	0.311	0.298
229	D3	237.6	238.1	237.8	116.0		227.7	225.0	226.3	110.4	1	95.2		241		0.294		0.266	Ì
जेकर म	E1	233.3	225.2	229.2	111.8		224.5	216.9	220.7	107.6		96.3		653		0.796		0.740	
采印	E2	223.2	219.4	221.3	108.0	110.1	214.0	212.2	213.1	103.9	106.1	96.3	96.3	648	あり	0.790	0.790	0.760	0.745
亚円	E3	230.7	222.2	226.5	110.5		223.0	214.0	218.5	106.6		96.5		643		0.784		0.736	

表 4-3-1 ボルト軸力計測およびすべり耐力試験結果

4-3-4 すべり係数算出結果

すべり係数は式(1)を用いて算出し、その結果は**表 4-3-1**に示している. **表 4-3-1**では、設計ボルト軸 カ(*Ns*)およびすべり試験直前の軸力(*N_b*)で算出したすべり係数 μ_s , μ_b を示したが、すべり耐力の評価は 後者で行った.

$$\mu = \frac{P}{m \cdot n \cdot N} \tag{1}$$

μ: すべり係数, P: すべり荷重, m: 接触面数, n: ボルト本数, N: ボルト軸力

すべり時は大きな音が発生し(有機ジンクを除く),荷重の低下(微小な低下の場合もあったが)は 明確であった.すべり係数 μ_bは,摩擦面により違いが生じているが,無機ジンクとブラストはほぼ同じ で 0.60 と高く,さらに,赤錆と薬品錆では 0.75 のすべり係数を有していた.なお,有機ジンクのすべ り係数は無機ジンクの約 1/2 と低かった.これは高摩擦型の有機ジンクではなく,一般の有機ジンクで あったためであり,**表 4-2-3**で示した表面粗さも無機ジンクの 1/2 以下であった.

試験	体	すへ	い時の	変位量[mm]
分類	名称	No.1치	ベルト	母枝	反間
Arr.: 466	A1	0.057		0.202	
悪機	A2	0.116	0.088	0.271	0.249
119	A3	0.090		0.275	
ľ,	B1	0.123		0.366	
フフ	B2	0.163	0.143	0.378	0.372
~ r	B3	*		*	
	C1	*		*	
赤錆	C2	0.227	0.201	0.522	0.529
	C3	0.174		0.535	
	D1	0.051		0.167	
月機シ	D2	0.056	0.054	0.154	0.161
19	D3	*		*	
	E1	0.111		0.321	
薬品錆	E2	0.110	0.092	0.375	0.341
	E3	0.055		0.327	

表 4-3-2 変位の計測結果

4-3-5 すべり時の変位量の計測結果

すべり時の変位の明確な定義はなく、本研究では、最大荷重(すべり耐力)から荷重が低下したとき の母板-添接板間等の相対変位量をすべり時の変位と定義した.すべり時の変位計測結果を表 4-3-2 に示 す. なお、表中の*については、試験直前に軸力の割増しを行った訳ではなかったこともあり、固定側 からすべりが発生するなど、計測ができなかった試験体を示している. これらの結果に示すように、変 位量は表面処理により大きく異なっており、有機ジンク<無機ジンク<薬品錆<ブラスト<赤錆の順と なり、塗装系は変位量が小さいことが判る. また、錆でも薬品錆と赤錆では大きく異なった. その理由 として、表 4-2-3 に示すように、錆厚が大きく異なったことが 1 つの大きな要因であると考えられる. 次に、計測位置によっても異なっており、No.1 ボルト位置に対し母板間では約 2.5~3.0 倍、母板間の方 が大きかった. 詳細については、次節の 4-4 で既往の文献データも含めて考察する.

図 4-3-4 に各試験体のすべり荷重と変位の関係(固定側からすべった試験体は除く)を示す. 図中に 示す×はすべり発生時を示している. これらの図に示すように,荷重と変位の関係は,摩擦面により大 きく異なっていることが判る. また,同じ摩擦面であっても No.1 ボルト位置と母板間においても大き く挙動が異なっていることが判る.

4-4 すべり時の変位量の考察

4-4-1 No.1 ボルト (内側ボルト) 位置での変位量

図 4-4-1 に本試験結果および既往の文献データを含めた No.1 ボルト位置での変位量を示し、横軸には すべり係数 μ_b およびすべり降伏耐力比 β (以下, β) で示した. ここで示す β は式(2)を用い、その際、 使用鋼材 (表 4-2-1) の降伏強度およびすべり荷重値 (表 4-3-1) を使用した. なお、文献データの試 験体概要を表 4-4-1 に示した. また、図 4-4-2 には既往の文献データの詳細なパラメータを示し、これ らの結果から変位に影響する特殊なデータ (フィラー付き継手および封孔処理ありの溶射) については、 図 4-4-1 では削除して示した. さらに、図 4-4-1(a)では μ_b と変位、図 4-4-1(b)では β と変位との回帰直 線を示し、これらの回帰直線式および相関係数については表 4-4-2 に示した. なお、道路橋示方書⁹(以 下、道示) および鉄道構造物等設計標準¹⁰⁾(以下、鉄道標準)では、ブラストと赤錆の両者に対し黒皮 を除去した粗面状態(以下,粗面状態) として扱っており、また、両者の実験結果に大きな違いはなく、 回帰直線ではブラストと赤錆の両者を合わせて粗面状態として整理した.

$$\beta = \frac{P}{(W-d) \cdot t \cdot \sigma_{ys}} \tag{2}$$

β: すべり降伏耐力比, P: すべり荷重,
 W: 幅, t: 板厚, d: 孔径, σ_{vs}: 降伏強度

	表 4-4-1	文	⁸⁾ の試験体の概要								
<u> </u>	鋼材	(母板)		;	ボルト			試験体			
文南番号	秋 亭 規格	降伏 強度 (N/mm²)	板厚 (mm)	規格	径 (mm)	長さ (mm)	幅 (mm)	ボルト 本数	孔径 (mm)	備考	
3)	SM 490Y	434	25	F10T	22	90	100	2	24.5	(*1)	
3)	SM 490Y	437	19	F10T	22	90	100	2	24.5	(*2)	
4)	SM 490Y	368	28	F10T	22	100	100	2	24.5		
5)	SM 490A	406	19	F8T	22	85	100	2	24.5		
6)	SM 490Y	402	22	F10T	22	90	120	3	24.5		
	SM 490A	323	50	F10T	36	175	152	3	40.0	太径	
	SM 490A	323	50	F10T	36	175	130	3	40.0	太径	
7)	SM 490A	323	50	F10T	22	150	122	7	24.5	多列	
	SM 490A	323	50	F10T	22	150	102	7	24.5	多列	
	SM 490A	386	19	F10T	22	85	126	3	24.5		
8)	SMA490W	429	22	F10T	22	90	90	2	24.5		

*1):1 面摩擦と2 面摩擦で実施.

表 4-4-2 回帰分析 (μ および β と変位量の関係)の集計結果

計測位置	摩擦面	横軸	回帰直線	相関係数	備考
	無機ジンク		y=0.29416x-0.08470	0.504	
	粗面状態	.,	y=0.19603x+0.03662	0.462	
	薬品錆	μ_b	y=0.13533x-0.00314	0.305	図-4-4-1(a)
No.1	溶射	I	y=0.05175x+0.06782	0.453	
ボルト	無機ジンク		y=0.04111x+0.05178	0.299	
	粗面状態	ß	y=0.06757x+0.11660	0.539	図 A A 1(L)
	薬品錆		y=0.00849x+0.09108	0.413	図-4-4-1(b)
	溶射		y=0.03726x+0.07194	0.383	
	無機ジンク		y=1.13236x-0.31057	0.643	
	粗面状態	.,	y=0.75103x-0.11040	0.859	図 -4-4-2(a)
	薬品錆	μ_s	y=0.14522x+0.16166	0.157	因-4-4-3(a)
口卡日目	有機ジンク		y=1.02867x-0.16899	0.918	
母奴间	無機ジンク		y=0.46034x-0.08356	0.937	
	粗面状態	ß	y=0.64916x-0.19047	0.886	図_4_4_2(b)
	薬品錆		y=0.33526x-0.01687	0.754	図-4-4-3(D)
	有機ジンク	I	y=0.59003x-0.09108	0.914	

図 4-4-1 に示すように、粗面状態ではすべり時の変位は 0.12~0.23mm であり、建築分野¹⁾では 0.2mm をすべりの判断基準としているが、これは赤錆を前提としていることを考えると、分布の上限側である 0.2mm をすべりの判断の目安値とするのは妥当と考えられる.一方、無機ジンクでは、変位は 0.05~0.12mm にあり、粗面状態と同様、上限側をすべりの判断目安と考えれば 0.1mm をすべりの判断目安と するのがよいと考えられる.同様に、有機ジンクや溶射についても、0.1mm をすべり判断目安とするの がよいと考えられる.なお、薬品錆では、赤錆とは異なり、むしろ無機ジンクと同等であると考えられ、0.1mm をすべりの判断目安とするのがよいと考えられる.

^{*2):}フィラー付き継手

図 4-4-1(a)に示すように、すべり係数 μ_b との関係については、いずれの摩擦面においても、 μ_b が大き くなれば変位も大きくなる傾向が示され、回帰直線の傾きが小さい薬品錆では相関係数は 0.305 と弱い 相関であるが、それ以外は 0.4 を超え、相関があると判断できる.次に、図 4-4-1(b)に示すように、 β が大きくなれば変位も大きくなる相関がいずれの摩擦面にも見られ、相関係数は 0.299~0.539 の範囲に あり、弱い相関(>0.2) もしくは相関あり(>0.4) と判断できる.また、本試験および文献データの 範囲においては、無機ジンクと粗面状態では約 0.09mm 幅で平行な回帰直線が示されており、粗面状態 のすべり判定基準が 0.2mm とすれば、無機ジンクのすべり判定目安を 0.1mm とするのがよいことは、 これらの結果からもわかる.なお、何れも回帰直線の傾きは小さく、No.1 ボルト位置での変位は β の影 響は小さい、すなわち、試験体形状による変位量の影響が小さいと考えられる.

図 4-4-2 に示す各パラメータの影響については、標準的な試験体(通常の2面摩擦)に対し、1面摩 擦継手では変位量に違いはなく、図 4-4-1 はこれらの試験体も示した.ただし、フィラー付きの試験体 については、多くがフィラーと母板の接触面ですべりが発生したが、フィラーと添接板面からすべりが 発生した場合もあり、現状ではすべり挙動が明確でなく、また、無機ジンクでは明らかに、標準的な試 験体より変位量は小さいので、図 4-4-1 はこれらの試験体を示さなかった.なお、ブラストではフィラー を有する継手も、標準的な試験体と違いなく、ほぼ回帰直線上にあると考えられるが、無機ジンクと整 合性をとるため、図 4-4-1 はこれらの試験体を示さなかった.また、溶射においても、封孔処理なし(溶 射金属面)と有機系の塗装である封孔処理ありでは変位量が異なることから、封孔処理ありについても 図 4-4-1 では示さなかった.ただし、封孔処理剤は有機系の塗装でもあり、有機ジンクと比べて大きな 違いはないことが判り、むしろ封孔処理した溶射面は、有機ジンクに分類するのがよいと考えられる.

以上を踏まえ,道示および鉄道標準に示されている摩擦面を適用する場合のすべり耐力試験において, 荷重の低下がほとんどなく変位が大きくなるケースにおけるすべり判定目安の変位量の提案値を表 4-4-3 に示す(次項の結果も含む). No.1 ボルト位置におけるすべり判定目安の変位量は,無機ジンク で0.1mm,粗面状態では0.2mmとするのがよいと考えられる.なお,ここでは道示および鉄道標準に示 されていない摩擦面については表中に記載しなかったが,有機ジンク,薬品錆および溶射(封孔処理な し)では0.1mmとするのがよいと考えられる.ただし,1面摩擦は適用の範囲と考えられるが,無機ジ ンクのフィラー付き継手および封孔処理ありの溶射は対象外である.

4-4-2 母板間(すべり側と固定側の母板)での変位量

図 4-4-3 には本試験結果および既往の文献データの母板間の変位量を示し、横軸にはすべり係数 μ_s とβで示した.なお、文献データはボルト軸力を計測していないケースが多く、ここでは、本試験デー タも含め設計ボルト軸力で評価したμ_sで示した.さらに、図 4-4-3(a)はμ_sと変位、図 4-4-3(b)ではβと 変位との回帰直線を示し、その回帰直線式および相関係数を表 4-4-2 に示した.また、図 4-4-4 には文 献データの詳細なパラメータを示し、これらの結果から変位に影響する特殊なデータ(多列ボルト継手) については、前項と同様、図 4-4-3 でも削除して示した.

図 4-4-3 に示すように,前項の 4-4-1 で示した No.1 ボルト位置より変位は大きく,また,変位の分 布幅も広く,無機ジンクや粗面状態では 0.13~0.65mm の範囲にあった.これらのばらつきの影響もあ り,建築分野¹⁾では No.1 ボルト付近を計測位置としているものと考えられる.ただし,ボルト製造会社 等の試験では,従来から参考値とする意味から母板間の変位が計測されており,また,容易に計測でき るのも事実である.

図 4-4-3(a)に示すように、μ_sが大きくなれば変位量も大きくなる傾向がみられ、薬品錆では相関あり と判断できないが、無機ジンクでは相関係数が 0.64 と相関ありと判断でき、さらに、粗面状態や有機ジ ンクでは相関係数は 0.8 を超え、強い相関が確認できた.ただし、無機ジンクでは、すべり係数が 0.6 付近におけるデータでばらつきも生じる結果となった.一方、図 4-4-3(b)に示すβで整理すれば、表 4-4-2 に示すように、薬品錆でも相関係数は 0.75 であり、粗面状態では 0.89、無機ジンクでは 0.91、有機ジン クでは 0.94 と強い相関がみられた.無機ジンクではすべり係数が 0.6 付近で変位量にばらつきが生じた

(図 4-4-3(a)) が, β で整理するとこれらのデータにおけるばらつきは解消されており,相関係数も 0.64 から 0.91 と強い相関となった.これは、すべり係数は 0.6 程度で違いは少ないが(大きな違いは生じない)、同じすべり係数であっても β は異なっているからと考えられ、その影響がすべり時の変位に違いが生じるものと考えられる.これらの結果が示すように、母板間では β の影響を大きく受けるため、すべり判定の目安を検討する場合、 β を考慮して設定する必要がある.

回帰直線に用いたデータのβ平均値は,無機ジンク,粗面状態および薬品錆は大きな違いはなくその 平均値は 0.8611,有機ジンクは低く 0.5993 であった.これらの値に表 4-4-2 で示した回帰直線式に代入 すると,変位量は,無機ジンクで 0.313mm,粗面状態で 0.361mm,有機ジンクでは 0.263mm,薬品錆で は 0.271mm となる.これらは各摩擦面におけるすべり時の平均変位推定値を示しているが,先と同様, 上限値付近(平均変位推定値より高め)をすべりの目安値と考えれば,道示および鉄道標準に示されて いる無機ジンクおよび粗面状態における母板間でのすべり判定の目安は,それぞれ 0.35mm, 0.4mm が よいと考えられる(表 4-4-3).その他の摩擦面として,薬品錆および有機ジンクでは 0.3mm とするの がよいと考えられる.

図 4-4-4 に示す各パラメータの影響について,標準的な試験体(通常の2面摩擦)に対し,膜厚が変われば変位量も異なっているが,これについては β で整理できる.同様に,ブラストの強弱(Sa2 1/2 および Sa1:言い換えると表面粗さ)で変位量の違いも生じたがこれについても β で整理できる.さらに,太径(M36)でも回帰直線上にある.ただし,多列(7列)の場合では,若干傾向が異なった.これは,試験体の変形の影響と考えられ,試験体の長さが長いため,その他の試験体と傾向が異なったものと考えられる.このため,多列は図 4-4-3 では示さなかった.

母板間では、すべり係数やβの影響が大きかったが、これは荷重増加に伴う試験体の変形量の影響と

考えられる. すなわち, すべり係数や *B*が大きいということは, すべり耐力時の荷重値が大きく, これ に伴う母板や添接板の変形が大きくなったことの影響と考えられる. 特に, 母板間ではこのような試験 体の変形の影響を大きく受けるため, **表 4-4-2** で示した回帰直線の傾きや相関係数が大きかった. 前節 で示した No.1 ボルト位置においても, 局部的な変形の影響のみであるが, それでも, 回帰直線は右肩 上がりで, 弱い相関あるいは相関ありと判断できる相関係数であった.

以上の結果から,先に示した母板間でのすべり判定の目安の適用範囲は,表面処理の品質(膜厚や表面粗さ等)によらず,標準試験片²⁾を用いることを前提すればよいと考えられる.なお,今後,データ数量を増やし,本提案の信頼性を向上させていくことは重要であると考えられる.

表 4-4-3 すべり判断目安値の提案

摩擦面	変位計測位置	
	No.1ボルト	母拓閉
	(内側ボルト)	母似间
無機ジンク	0.10mm	0.35mm
粗面状態(ブラスト、赤錆)	0.20mm	0.40mm

注)母板間では、標準試験片²⁾を使用することを前提.

4-5 結 論

本研究は、摩擦面に応じた変位量によるすべり判断の目安値を提案することを目的に行った実験的研 究である.本研究から得られた主な結論は、以下の通りである.

- (1) すべり時の変位は、表面処理方法および測定位置により大きく異なった.
- (2) すべり係数 μ やすべり降伏耐力比 β が大きくなれば、すべり時の変位量が大きくなる相関関係が認められた.特に、母板間(固定側とすべり側の母板間)の計測におけるすべり降伏耐力比 β との関係では、強い相関が認められ(図 4-4-3(b))、相関係数は無機ジンクで 0.91、粗面状態(ブラスト、赤錆)では 0.89 であった(表 4-4-2).
- (3) 変位量によるすべり判定の目安値として、No.1ボルト(内側ボルト)位置では、無機ジンクで0.1mm, 粗面状態では0.2mmがよいと考えられる(表4-4-3).また、薬品錆、有機ジンクおよび溶射では0.1mm とするのがよいと考えられる.
- (4) 変位量によるすべり判定の目安値として,母板間では,無機ジンクで 0.35mm,粗面状態では 0.4mm がよいと考えられる(表 4-4-3).また,薬品錆および有機ジンクでは 0.3mm とするのがよいと考え られる.なお,母板間では試験体形状の影響を大きく受けるため,この適用は標準試験片²⁾を使用し た場合とする.

4-6 おわりに

これまで高力ボルト摩擦接合継手のすべり耐力試験は、数多く行われてきたが、その際、試験体のす べりが明確な場合は、現状のすべり耐力(すべり荷重)の判定法に問題はないと考えられる.ただし、 荷重の低下がほとんどなく変位が大きくなる場合、すなわち、すべり時の荷重が不明瞭な場合における すべりの判定は解明すべき点が多かった.そこで、このようなケースにおけるすべりの判定が適切に行 えるよう(容易に判断できる)、本研究では、摩擦面に応じた変位量によるすべり判断の目安値を提案 した(**表 4-4-3**).

これまで、このようなすべり時の荷重が不明瞭な場合、建築分野で推奨しているすべり判定値 0.2mm¹⁾ を、摩擦面に依らず適用している場合もあった.ただし、建築鉄骨におけるボルト継手部の摩擦面は、 赤錆が基本である.そこで、摩擦面の違いにより異なるすべり判定の目安値を示したことにより、すべ り耐力試験の試験精度が向上するものと考えられる.

また,従来からボルト製造会社等では,母板間での変位を計測した試験が行われてきた.これは,ク リップゲージの装着が容易だからである.本研究では,母板間での変位による判定値も示したが,これ で判定を行えば,変位計測を伴うすべり耐力試験がより容易に行えるものと考えられる.

参考文献

- 1) 日本建築学会:鋼構造接合部設計指針, 2012.3.
- 2) 土木学会:高力ボルト摩擦接合継手の設計・施工・維持管理指針(案), 2006.12.
- 3) 南邦明,田村洋,吉岡夏樹,内田大介,茂呂充,安藤光希:高力ボルト継手における摩擦面の数 に応じた導入ボルト軸力に関する検討,土木学会論文集A1, Vol. 75, No. 1, pp. 46-57, 2019.2.
- 4) 吉岡夏樹,本多克行,山口隆司,齊藤史朗,森本 洸,佐々木 研: 錆促進剤塗布後の曝露期間に着 目した摩擦接合継手のすべり試験,土木学会第73回年次学術講演会,I-180,2018.8.
- 5) 南 邦明, 横山秀喜, 徳富恭彦, 森井茂幸: 亜鉛アルミ合金溶射を施した高力ボルト摩擦接合継手に 関する研究, 土木学会論文集A1, Vol.74, No.3, pp.385-398, 2018.10.
- 6) 森 猛,南 邦明,井口 進,山口隆司:接合面処理方法と品質を考慮した高力ボルト摩擦接合継手の すべり係数の提案,土木学会論文集A, Vol.64, No.1, pp.48-59, 2008.1.
- 7) 南 邦明,森 猛,堀川秀信: 50mm厚鋼板を用いた太径ボルト(M36)のすべり耐力試験,土木学会論 文集A, Vol.62, No.2, pp.267-278, 2006.4.
- 8) 井上大地,内田大介,浅野浩一,貝沼重信,増本岳:耐候性鋼材を用いた高力ボルト摩擦接合面の 表面性状とすべり係数,鋼構造年次論文報告集,Vol.25, pp.48-54, 2017.11
- 9) 日本道路協会:道路橋示方書·同解説-II 鋼橋·鋼部材編, 2017.11.
- 10) 鉄道総合技術研究所:鉄道構造物等設計標準・同解説(鋼・合成構造物), 2009.7.

資料 高力ボルト継手施工部会での研究成果

土木学会論文集 A1

- 1)南 邦明,遠藤輝好,小峰翔一,吉岡夏樹,宮井大輔,澁谷 敦,内田大介:トルシア形ボルト S10T(M22)の導入軸力および機械的性質の統計調査,土木学会論文集A1,Vol.74,No.2, pp.280-289, 2018.8.
- 2)南 邦明、田村 洋,吉岡夏樹,内田大介,茂呂 充,安藤光希:高力ボルト継手における摩擦面の数 に応じた導入ボルト軸力に関する検討,土木学会論文集A1,Vol. 75, No. 1, pp. 46-57, 2019.2.
- 3)南邦明、田村洋,白旗弘実,内田大介,吉岡夏樹,濱達矢:高力ボルト摩擦接合継手のすべり耐力試験におけるすべり発生時の変位量,土木学会論文集A1,Vol. 75, No. 2, pp. 249-256, 2019.8.
- 4)南 邦明,遠藤輝好,小峰翔一,宮井大輔,藤野大地,吉岡夏樹,澁谷 敦,濱 達矢:高力六角ボ ルトF10T(W) (M22)のトルク係数値および機械的性質の統計調査,土木学会論文集A1, Vol. 75, No. 2, pp. 257-265, 2019.8.
- 5)遠藤輝好,南邦明,小峰翔一,宮井大輔,藤野大地,吉岡夏樹,澁谷 敦,濱 達也:トルシア形ボルトS10TW (M22)の導入軸力および機械的性質の統計調査,土木学会論文集A1, Vol.75, No.3, pp.305-310, 2019.10.
- 6) 白旗弘実,南邦明,藤野大地,宮井大輔,矢野将太,横田渉:F10Tを用いた高力ボルト摩擦接合継手におけるナット回転角法の適用の検討,土木学会論文集A1, Vol.76, No.1, pp.1-14, 2020.1.
- 7)小峰翔一,南邦明,遠藤輝好,吉岡夏樹,宮井大輔,藤野大地,澁谷敦,濱達也:溶融亜鉛めっき高力ボルトF8Tのトルク係数値および機械的性質の統計調査,土木学会論文集A1,土木学会論文集A1,Vol.76,No.1,pp.174-179,2020.3.
- 8)田村 洋,南 邦明,吉岡夏樹,内田大介,茂呂 充,濱 達矢,平尾賢生:仕様の異なる接触面を含む高力ボルト摩擦接合継手の適用性,土木学会論文集A1,(2019.6投稿,登載決定)
- 9)南 邦明,田村 洋,筒井康平,藤野大地,白旗弘実,内田大介,吉岡夏樹:高力ボルトのキャリブ レーション試験の1考察,土木学会論文集A1,(2020.3投稿)
- 10) 南 邦明,田村 洋,内田大介,白旗弘実,吉岡夏樹,筒井康平,藤野大地:高力ボルト継手のリ ラクセーション試験における初期値の設定について,土木学会論文集A1,(2020.3投稿)
- 11) 田村 洋,南 邦明,和 暢,吉岡 夏樹,内田 大介,茂呂 充,濱 達矢:仕様の異なる接触面を含 む高力ボルト摩擦接合継手の適用性に関する追加検討,土木学会論文集A1,2020(投稿予定)
- 12) 内田 大介,南 邦明,田村 洋,吉岡 夏樹,村井武尊:高力ボルト継手における摩擦面の数と無 機ジンクの膜厚がボルト軸力の低下に及ぼす影響,土木学会論文集A1,2020(投稿予定)

「橋梁と基礎」

- 1) 田村 洋,南 邦明,濱 達矢,内田大介,吉岡夏樹,茂呂 充:高力ボルト摩擦接合継手における 接触面の多様化と異種接合面継手に関する検討,橋梁と基礎 Vol.53.No.8, pp. 37-40, 2019.8.
- 2) 南邦明,遠藤輝好,小峰翔一,藤野大地,吉岡夏樹,宮井大輔:架設現場での高力ボルト締付け 作業の実態と作業効率向上に向けた方策案,橋梁と基礎 Vol.53.No.10, 2019.9.

土木学会年次学術講演会

1)小峰翔一,南邦明,宮井大輔, 澁谷 敦:トルシア形ボルトS10T(M22)の機械的性質,土木学会第 73回年次講演会I-177,2018.8.

- 2) 遠藤輝好,南邦明,吉岡夏樹,内田大介:トルシア形ボルトS10T(M22)の導入軸力,土木学会第73 回年次講演会I-178, 2018.8.
- 3)田村 洋,南 邦明,吉岡夏樹,内田大介:高力ボルト継手すべり係数に及ぼす摩擦面数の影響, 土木学会第73回年次講演会I-186,2018.8.
- 4) 茂呂 充,田村 洋,南邦明,吉岡夏樹:フィラーを有する高力ボルト継手の導入ボルト軸力に関する実験的検討,土木学会第73回年次講演会I-187,2018.8.
- 5)藤野大地, 白旗弘実, 南 邦明, 宮井大輔, 横田 渉: F10Tボルトのナット回転角法による導入軸力 試験およびリラクセーション試験, 土木学会第73回年次講演会I-202, 2018.8.
- 6) 白旗弘実,南邦明,横田渉,矢野将太,藤野大地:F10Tボルトのナット回転角法により締め付けた試験体のすべり試験,土木学会第73回年次講演会I-203,2018.8.
- 7) 宮井大輔,南邦明,遠藤輝好,吉岡夏樹,濱達矢:高力六角ボルトF10T(W)(M22)のトルク係数値, 土木学会第74回年次講演会I-411,2019.9.
- 8)藤野大地,南邦明,小峰翔一,澁谷敦:高力六角ボルトF10T(W)の機械的性質,土木学会第74回 年次講演会I-412,2019.9.
- 9) 白旗弘実,南邦明,宮井大輔,藤野大地,濱 達矢,矢野将太,町田祐貴:ナット回転法における 一次締めによるボルト導入軸力について,土木学会第74回年次講演会I-413,2019.9.
- 10) 遠藤輝好,南邦明,小峰翔一,藤野大地,吉岡夏樹,宮井大輔:鋼橋架設現場における高力ボルトS10TとF10Tの作業性の比較,土木学会第74回年次講演会,I-414,2019.9.
- 11) 小峰翔一,南邦明,遠藤輝好,吉岡夏樹,宮井大輔,藤野大地,澁谷敦,濱 達矢:溶融亜鉛め っき高力ボルトF8Tの特性,土木学会第74回年次講演会I-415,2019.9.
- 12) 南 邦明,田村洋,白旗弘実,内田大介,吉岡夏樹,濱 達矢:摩擦処理面に応じた変位量による すべり判定値の提案,土木学会第74回年次講演会I-419,2019.9.
- 13) 田村 洋,南 邦明,内田大介,濱 達矢:母板表裏面で接触面仕様が異なる高力ボルト継手の適 用性,土木学会第74回年次講演会I-422,2019.9.
- 14) 茂呂 充,田村 洋,南邦 明,内田大介,吉岡夏樹:母板と連結板で接触面仕様が異なる高力ボルト継手の適用性,土木学会第74回年次講演会I-423,2019.9.
- 15) 和 暢,田村 洋,南 邦明,吉岡 夏樹,内田 大介,茂呂 充,濱 達矢:母板と連結板で接触面仕 様が異なる高力ボルト継手の適用性に関する追加検討,土木学会第75回年次講演会(発表予定)
- 16) 白旗弘実,南邦明,田村洋,内田大介,吉岡夏樹,筒井康平,藤野大地:リラクセーション試験の初期値の設定方法が試験結果に及ぼす影響,土木学会第75回年次講演会(発表予定)
- 17) 村井武尊,内田大介,南 邦明,田村 洋,吉岡夏樹:高力ボルト継手の接触面数と無機ジンクの膜厚がボルト軸力の低下に及ぼす影響,土木学会第75回年次講演会(発表予定)

国際会議

- Hiroshi Tamura, Kuniaki Minami, Natsuki Yoshioka, Daisuke Uchida, Makoto Moro: Experimental study in the initial bolt preload of high strength bolted joints with filler plates, 2nd CCES-JSCE Joint Symposium of Civil Engineering, 2018.10.
- Hiroshi Tamura, Kuniaki Minami, Natsuki Yoshioka, Daisuke Uchida, Makoto Moro, Tatsuya Hama : Comparative study on applied bolt load reduction in high strength bolted joints, 12th Pacific Structural Steel Conference Tokyo, Japan, 2019.11

高力ボルト継手施工部会報告書 (No.085)

- 編 集 鋼橋技術研究会 高力ボルト継手施工部会
- 発 行 令和2年6月
- 発 行 所 鋼橋技術研究会 〒965-0832 福島県会津若松市天神町25-3 有限会社ハートランド内 TEL.0242-36-5260

※当該資料の内容を複写したり他の媒体へ転載するような場合は、 必ず鋼橋技術研究会の許可を得てください。

編集協力 株式会社 アズ・クリエイト